精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)的定义域为(0,+∞),其导函数为f′(x),对任意正实数x满足xf′(x)>f(x),且f(2)=0.且不等式f(x)<0的解集为(  )
A.(0,2)B.(2,+∞)C.(0,1)D.(1,+∞)

分析 通过已知条件,构造分数函数的导数,判断函数的单调性,通过f(2)=0,求出不等式的解集即可.

解答 解:因为xf′(x)>f(x),所以$\frac{f(x)}{x}$=[xf′(x)-f(x)]$\frac{1}{{x}^{2}}$,
即F(x)=$\frac{f(x)}{x}$在定义域内递增函数,又因F(2)=$\frac{f(2)}{2}$=0,
则不等式f(x)<0的解集就是不等式$\frac{f(x)}{x}$<0的解集,
即为F(x)<F(2)的解集,
解得{x|0<x<2}.
故选A.

点评 本题考查函数的导数与函数的单调性的应用,考查转化思想与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在三棱锥O-ABC中,已知OA,OB,OC两两垂直且相等,点P、Q分别是线段BC和OA上的动点,且满足BP≤$\frac{1}{2}$BC,AQ≥$\frac{1}{2}$AO,则PQ和OB所成角的余弦值的取值范围是(  )
A.[$\frac{\sqrt{2}}{2}$,1]B.[$\frac{\sqrt{3}}{3}$,1]C.[$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{5}}{5}$]D.[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设{an}是等比数列,下列结论中不正确的是(  )
A.若a1a2>0,则a2a3>0B.若a1+a3<0,则a5<0
C.若a1a2<0,则a1a5<0D.若0<a1<a2,则a1+a3>2a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,b=3,c=$\sqrt{7}$,则△ABC的面积是(  )
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=x2+bx+c在区间[0,+∞)上单调递增的充要条件是(  )
A.b≥0B.b≤0C.b>0D.b<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e为自然对数的底数,k、b为实常数),若该食品在0℃的保鲜时间为120小时,在22℃的保鲜时间是30小时,则该食品在33℃的保鲜时间是15小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(2x)>2x的解集为(  )
A.(-∞,1)B.(-∞,0)C.(0,∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现有甲、乙两个投资项目,对甲项目投资十万元,据对市场120份样本数据统计,年利润分布如表:
年利润1.2万元1.0万元0.9万元
频数206040
对乙项目投资十万元,年利润与产品质量抽查的合格次数有关,在每次抽查中,产品合格的概率均为$\frac{1}{3}$,在一年之内要进行2次独立的抽查,在这2次抽查中产品合格的次数与对应的利润如表:
合格次数2次1次0次
年利润1.3万元1.1万元0.6万元
记随机变量X,Y分别表示对甲、乙两个项目各投资十万元的年利润,
(1)求X>Y的概率;
(2)某商人打算对甲或乙项目投资十万元,判断那个项目更具有投资价值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(I) 求进入商场的1位顾客购买甲,乙两种商品中的一种的概率;
(II)求进入商场的1位顾客至少购买甲,乙两种商品中的一种概率;
(III)用ξ表示进入商场的3位顾客中至少购买甲,乙两种商品中的一种的人数,求ξ的分布列.

查看答案和解析>>

同步练习册答案