精英家教网 > 高中数学 > 题目详情
16.如图,在长方体ABCD-A1B1C1D1中,AB=2AD=4,A A1=2$\sqrt{2}$,M是C1D1的中点.
(1)在平面A1B1C1D1内,请作出过点M与BM垂直的直线l,并证明l⊥BM;
(2)设(1)中所作直线l与BM确定平面为α,求直线BB1与平面α所成角的大小.

分析 (1)连接A1M,M B1,则直线A1M就是所求的l,证明A1M⊥平面B1BM,即可证明l⊥BM;
(2)设N为BM的中点,连接B1N,则B1N⊥MB,B1N⊥平面A1BM,即B1N⊥平面α,∠NBB1就是BB1与平面α所成角,即可求直线BB1与平面α所成角的大小.

解答 解:(1)连接A1M,M B1,则直线A1M就是所求的l,
证明如下:
在长方体ABCD-A1B1C1D1中,BB1⊥平面A1B1C1D1
A1M?平面A1B1C1D1,∴BB1⊥A1M.
在矩形A1B1C1D1中,A1B1=2 A1D1=4,M是C1D1的中点.
∴△A1D1M和△B1C1M都是等腰直角三角形,
∴∠A1MD1=∠B1MC1=45°,故∠A1MB1=90°,
即A1M⊥MB1,又BB1∩MB1=B1,A1M⊥平面B1BM,
∴A1M⊥MB,即l⊥B1M…(6分)
(2)连接A1B,由(1)A1M⊥平面B1BM,A1M?平面A1MB,
∴平面A1BM⊥平面B1BM,平面A1BM∩平面B1BM=BM,
在Rt△B1BM中,B1M=BB1=2$\sqrt{2}$,设N为BM的中点,连接B1N,则B1N⊥MB,
∴B1N⊥平面A1BM,即B1N⊥平面α,
∴∠NBB1就是BB1与平面α所成角,
因为Rt△B1BM是等腰直角三角形,所以∠NBB1=45°.
因此,BB1与平面α所成角的大小为45°…(12分)

点评 本题考查线线、线面位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a=1og1.20.8,b=1og0.70.8,c=1.20.8,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-a,g(x)=a|x|,a∈R.
(1)设F(x)=f(x)-g(x).
①若a=$\frac{1}{2}$,求函数y=F(x)的零点;
②若函数y=F(x)存在零点,求a的取值范围.
(2)设h(x)=f(x)+g(x),x∈[-2,2],若对任意x1,x2∈[-2,2],|h(x1)-h(x2)|≤6恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点B(-2,0)、C(2,0),且△ABC的周长等于14,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列${a_1}=1,{a_2}=5,{a_{n+2}}={a_{n+1}}-{a_n}({n∈{N^*}})$,则a2016=(  )
A.1B.4C.-4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a=(cosωx,sinωx)$,$\overrightarrow b=(cosωx,\sqrt{3}cosωx)$,其中ω>0,函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$,其最小正周期为π.
(1)求函数f(x)的表达式及单调减区间;
(2)在△ABC的内角A,B,C所对的边分别为a,b,c,S为其面积,若f($\frac{A}{2}$)=1,b=1,S△ABC=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设曲线x=$\sqrt{2y-{y}^{2}}$上的点到直线x-y-2=0的距离的最大值为a,最小值为b,则a-b的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期和对称轴;
(2)将函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移$\frac{π}{3}$个单位,得函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=6,且g(B)=0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F1,F2 分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,(a>1)的左、右焦点,P在椭圆上且到两个焦点F1,F2 的距离之和为2$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,作F1M⊥l,F2N⊥l,分别交直线l于M、N两点,求四边形F1MNF2的面积S的最大值.

查看答案和解析>>

同步练习册答案