分析 (1)连接A1M,M B1,则直线A1M就是所求的l,证明A1M⊥平面B1BM,即可证明l⊥BM;
(2)设N为BM的中点,连接B1N,则B1N⊥MB,B1N⊥平面A1BM,即B1N⊥平面α,∠NBB1就是BB1与平面α所成角,即可求直线BB1与平面α所成角的大小.
解答 解:(1)连接A1M,M B1,则直线A1M就是所求的l,
证明如下:
在长方体ABCD-A1B1C1D1中,BB1⊥平面A1B1C1D1,
A1M?平面A1B1C1D1,∴BB1⊥A1M.
在矩形A1B1C1D1中,A1B1=2 A1D1=4,M是C1D1的中点.
∴△A1D1M和△B1C1M都是等腰直角三角形,
∴∠A1MD1=∠B1MC1=45°,故∠A1MB1=90°,
即A1M⊥MB1,又BB1∩MB1=B1,A1M⊥平面B1BM,
∴A1M⊥MB,即l⊥B1M…(6分)
(2)连接A1B,由(1)A1M⊥平面B1BM,A1M?平面A1MB,
∴平面A1BM⊥平面B1BM,平面A1BM∩平面B1BM=BM,
在Rt△B1BM中,B1M=BB1=2$\sqrt{2}$,设N为BM的中点,连接B1N,则B1N⊥MB,
∴B1N⊥平面A1BM,即B1N⊥平面α,
∴∠NBB1就是BB1与平面α所成角,
因为Rt△B1BM是等腰直角三角形,所以∠NBB1=45°.
因此,BB1与平面α所成角的大小为45°…(12分)
点评 本题考查线线、线面位置关系,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 4 | C. | -4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$+1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com