精英家教网 > 高中数学 > 题目详情

设x,y∈R,a>1,b>1,若,则的最大值为(   )

A.2            B.          C.1         D.

 

【答案】

C

【解析】

试题分析:因为,x,y∈R,a>1,b>1,且

所以,

由均值定理,,故

故选C.

考点:对数及对数运算,基本不等式

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log
3
(x+a)的图象上.
(1)求实数a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有两个不等实根时,求b的取值范围.
(B类)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求证:f(x)为奇函数;
(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=
1
2
an=f(n)(n∈N*)
,且b1=1,bn=g(n)(n∈N*),则数列{anbn}的前n项和为Sn为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)设向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,满足|
s
|+|
t
 |=2
2
,已知两定点A(1,0),B(-1,0),动点P(x,y),
(1)求动点P(x,y)的轨迹C的方程;
(2)已知直线m:y=x+t交轨迹C于两点M,N,(A,B在直线MN两侧),求四边形MANB的面积的最大值.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),求证:线段OG的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在R上,对任意mn恒有f(m+n)=f(mf(n),且当x>0时,0<f(x)<1.

(1)求证: f(0)=1,且当x<0时,f(x)>1;

(2)求证:f(x)在R上单调递减;

(3)设集合A={ (xy)|f(x2f(y2)>f(1)},集合B={(xy)|f(axg+2)=1,a∈R},若AB=,求a的取值范围.

查看答案和解析>>

同步练习册答案