精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2x+b,g(x)=x2+bx+c,其中b、c∈R,设$h(x)=\frac{g(x)}{f(x)}$.
(1)如果h(x)为奇函数,求实数b、c满足的条件;
(2)在(1)的条件下,若函数h(x)在区间[2,+∞)上为增函数,求c的取值范围;
(3)若对任意的x∈R恒有f(x)≤g(x)成立.证明:当x≥0时,g(x)≤(x+c)2成立.

分析 (1)根据函数奇偶性的定义建立方程关系进行求解即可.
(2)根据好是单调性的定义和性质建立不等式关系即可得到结论.
(3)根据条件求出c的取值范围,即可得到结论.

解答 解:(1)$h(x)=\frac{{{x^2}+bx+c}}{2x+b}$,设$h(x)=\frac{g(x)}{f(x)}$的定义域为D,
∵h(x)为奇函数,∴对于任意x∈D,h(-x)=-h(x)成立.…(1分)
即:$\frac{{{x^2}-bx+c}}{-2x+b}=-\frac{{{x^2}+bx+c}}{2x+b}$化简得:bx2-bc=0…(3分)
因对于任意x∈D都成立,
∴$\left\{{\begin{array}{l}{b=0}\\{bc=0}\end{array}}\right.$,
即b=0,c∈R…(4分)
(2)由(1)知b=0,∴$h(x)=\frac{1}{2}x+\frac{c}{2x}$…(5分)
∵h(x)在[2,+∞)上为增函数,
∴任取2≤x1<x2时,$f({x_2})-f({x_1})=\frac{1}{2}({x_2}-{x_1})(1-\frac{c}{{{x_1}{x_2}}})>0$恒成立.…(6分)
即任取2≤x1<x2时,1-$\frac{c}{{x}_{1}{x}_{2}}$>0成立,
也就是c<x1x2成立. …(8分)
∴c≤4,即c的取值范围是(-∞,4]. …(10分)
(3)因为任意的x∈R恒有f(x)≤g(x)成立,
所以对任意的x∈R,2x+b≤x2+bx+c,
即x2+(b-2)x+c-b≥0恒成立.…(11分)
所以判别式△=(b-2)2-4(c-b)≤0,
从而c≥$\frac{{b}^{2}+1}{4}$,
∴c≥1,且c$≥2\sqrt{\frac{{b}^{2}}{4}×1}$=|b|,…(13分)
因此 c(c-1)≥0且2c-b=c+(c-b)>0.…(14分)
故当x≥0时,有(x+c)2-g(x)=(2c-b)x+c(c-1)≥0.…(15分)
即当x≥0时,g(x)≤(x+c)2成立.…(16分)

点评 本题主要考查函数奇偶性的定义和单调性的应用,利用定义法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),使得对函数f(x)定义域内的任意两个自变量x1、x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)已知函数f(x)=x2+1,$x∈[{-\frac{1}{2},\frac{1}{2}}]$,判断f(x)与集合M的关系,并说明理由;
(2)已知函数g(x)=ax+b∈M,求实数a,b的取值范围;
(3)是否存在实数a,使得$p(x)=\frac{a}{x+2}$,x∈[-1,+∞)属于集合M?若存在,求a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,且asinA+bsinB-csinC=asinB
(1)确定∠C的大小;
(2)若c=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+x-6=0}.
(1)若A∩B=A∪B,求实数a的值;
(2)若∅?(A∩B)且A∩C=∅,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$.
(1)设A($\sqrt{5}$,0),F1,F2分别是曲线C的上,下焦点,求经过点F1且垂直于直线AF2的直线m的参数方程.
(2)已知点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$),设直线l与曲线C的两个交点为M,N,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:${y_1}=3\sqrt{2}sin({100πt}),{y_2}=3cos({100πt+\frac{π}{4}})$,则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.$6\sqrt{2}$B.6C.$3\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.实数a、b、c满足a2+b2+c2=5.则6ab-8bc+7c2的最大值为45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量$\overrightarrow{i}$、$\overrightarrow{j}$作为基底.任作一个向量$\overrightarrow{a}$,由平面向量基本定理知,有且只有一对实数x、y,使得
$\overrightarrow{a}=x\overrightarrow{i}+y\overrightarrow{j}$…①
我们把(x,y)叫做向量$\overrightarrow{a}$的(直角)坐标,,记作$\overrightarrow{a}$=(x,y)…②
其中x叫做$\overrightarrow{a}$在x轴上的坐标,y叫做$\overrightarrow{a}$在y轴上的坐标,②式叫做向量的坐标也为(x,y).特别地,$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{0}$=(0,0).
如图,在直角坐标平面内,以原点O为起点作$\overrightarrow{OA}$=$\overrightarrow{a}$,则点A的位置由a唯一确定.
设$\overrightarrow{OA}=x\overrightarrow{i}+y\overrightarrow{j}$,则向量$\overrightarrow{OA}$的坐标(x,y)就是点A的坐标;反过来,点A是坐标(x,y)也是向量$\overrightarrow{OA}$的坐标.因此,在平面直角坐标系中,每一个平面向量都是可以用一对实数唯一表示.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,AE⊥PD于点E,l⊥平面PCD,求证:l∥AE.

查看答案和解析>>

同步练习册答案