精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=mx+2,g(x)=x2-2x,?x0∈[-1,2],?x1∈[-1,2],使得f(x0)>g(x1),则实数m的取值范围是-1.5<m<3.

分析 要使命题成立需满足f(x0min>g(x1min,利用函数的单调性,可求最值,即可得到实数m的取值范围.

解答 解:要使命题成立需满足f(x1min>g(x2min
x1∈[-1,2],g(x)=x2-2x∈[-1,2],g(x1min=-1
m>0,函数f(x)=mx+2在[-1,2]上是增函数,所以f(x0min=f(-1)=-m+2,
∴-m+2>-1,∴m<3,∴0<m<3;
m=0,f(x)=2,f(x0min=2>-1,成立;
m<0,函数f(x)=mx+2在[-1,2]上是减函数,所以f(x0min=f(2)=2m+2,
∴2m+2>-1,∴m>-1.5,∴-1.5<m<0,
综上所述,实数m的取值范围是-1.5<m<3.
故答案为:-1.5<m<3.

点评 本题考查函数最值的运用,考查函数的单调性,考查学生分析解决问题的能力,要使命题成立需满足f(x1min>g(x2min,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知直线l1:ax-y+3=0与直线l2:(a-1)x+2y-5=0,若直线l1的斜率为2,则a=2,若l1⊥l2,则a=2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a、b、c分别是角A、B、C的对边,且2acosB=bcosC+ccosB.
(1)求角B的大小;
(2)若b=2,a+c=4,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6
(1)求∠BAC的大小;
(2)若E在AC上,且AC=3AE.已知△ABC的面积为15,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}x-y-4≤0\\ x+2y-2≥0\\ x-2y+2≥0\end{array}\right.$,则z=2x+y的最小值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),y=f(x)的部分图象如图,则f($\frac{π}{2}$)=(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.随机变量X只能取1,2,3,且P(X=1)=P(x=3),则E(X)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的面积为$\frac{{\sqrt{3}}}{2}$,AC=2,∠BAC=$\frac{π}{3}$,则∠ACB=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐标原点为点O,有顶点坐标为(2,0),离心率e=$\frac{{\sqrt{3}}}{2}$,过椭圆右焦点倾斜角为30°的直线交椭圆与点A,B两点.
(1)求椭圆的方程.
(2)求三角形OAB的面积.

查看答案和解析>>

同步练习册答案