精英家教网 > 高中数学 > 题目详情
9.y=sin(ωx+φ)(ω>0)与y=a函数图象相交于相邻三点,从左到右为P、Q、R,若PQ=3QR,则a的值为(  )
A.±$\frac{1}{2}$B.±$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{3}}{2}$D.±1

分析 根据题意得出点Q、P的横坐标的差等于函数的周期,点R、Q的连线段的垂直平分线是函数图象的一条对称轴.由此设出P、R、Q三点的坐标,建立方程组解出其中一点的横坐标值,即可求出a的值.

解答 解:设P(x1,a),R(x2,a),Q(x3,a),
根据P、R、R为相邻三点,从左到右为P、R、R,且PR=3RQ,
如图所示;
则$\left\{\begin{array}{l}{{x}_{3}{-x}_{1}=\frac{2π}{ω}}\\{\frac{1}{2}{(x}_{2}{+x}_{3})•ω+φ=\frac{π}{2}+kπ}\end{array}\right.$,(k∈Z)…①
由PR=3RQ,得x2-x1=3(x3-x2),…②
由①②联立,解得x2=$\frac{π}{4ω}$-$\frac{φ}{ω}$+$\frac{kπ}{ω}$,(k∈Z)
因此,a=f(x2)=sin(ωx2+φ)=sin($\frac{π}{4}$+kπ)=±$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了数形结合的解题方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(2,3),则与$\overrightarrow{a}$垂直的一个向量$\overrightarrow{b}$及$\overrightarrow{a}$的长度分别为(  )
A.$\overrightarrow{b}$=(3,2),|$\overrightarrow{a}$|=5B.$\overrightarrow{b}$=(-3,2),|$\overrightarrow{a}$|=13C.$\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=5D.$\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,是直三棱柱ABC-A1B1C1中,AA1=6,AB=AC=4,AB⊥AC,点E,F分别是AB1,CC1动点,$\overrightarrow{AF}$=λ$\overrightarrow{F{B}_{1}}$,$\overrightarrow{CE}$=μ$\overrightarrow{E{C}_{1}}$.则当V${\;}_{三棱锥{B}_{1}-EFB}$=4时,必有(  )
A.λ=$\frac{1}{3}$B.μ=$\frac{1}{3}$C.λ=3D.μ=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知圆C1:(x+8)2+(y+6)2=25和圆C2:(x-4)2+(y-6)2=25.
(1)若直线1过原点,且被C2截得的弦长为6,求直线l的方程;
(2)是否存在点P满足:过点P的无穷多对互相垂直的直线l1和12,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=lo${g}_{\frac{1}{2}}$sin(2x+$\frac{π}{4}$)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.我们将若干个数x,y,z,…的最大值和最小值分别记为max(x,y,z,…)和min(x,y,z,…),已知a+b+c+d+e+f+g=1,求min[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{C}_{R}Q}\end{array}\right.$,则f(g(π))的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:函数f(x)=5sinxcosx+5$\sqrt{3}$sin2x-$\frac{5}{2}$$\sqrt{3}$(x∈R)
(1)求f(x)的最小正周期;
(2)求f(x)的单递增区间;
(3)求f(x)图象的对称轴、对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2cosθ.
(Ⅰ) 写出直线l和曲线C的普通方程;
(Ⅱ) 已知点P为曲线C上的动点,求P到直线l的距离的最大值.

查看答案和解析>>

同步练习册答案