精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}\right.$,则函数y=f(x)+x-4 的零点个数为(  )
A.1B.2C.3D.4

分析 由题意,判断此函数的零点个数可转化为两个函数y=-x+4,与y=f(x)的交点个数,结合两个函数的图象得出两函数图象的交点个数,即可得到原函数零点的个数.

解答 解:函数y=f(x)+x-4的零点
即是函数y=-x+4与y=f(x)的交点的横坐标,
由图知,函数y=-x+4与y=f(x)的图象有两个交点
故函数y=f(x)+x-4的零点有2个.
故选:B.

点评 本题考查函数的零点的定义及其个数的判断,解题的关键是理解函数的零点定义,依据定义将求零点个数的问题转化为两个函数交点个数的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若全集U={n|n是小于9的正整数},集合A={n∈U|n是奇数},B={n∈U|n是3的倍数},求:
(1)A∩B
(2)∁U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点分别为A和B,且$\overrightarrow{AB}$与$\overrightarrow{n}$=(1,-$\frac{\sqrt{3}}{2}$)共线,若点O,F分别为椭圆C的中心和左焦点,点P为椭圆C上任意一点,且$\overrightarrow{OP}$•$\overrightarrow{FP}$的最大值为6,则椭圆C的长轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,则z=-3x+2y的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:△ABC中,D是BC中点,则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$);命题q:已知两向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=2.则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.¬pD.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知$α∈(0,\frac{π}{2})$,化简$\frac{(sin2α+cos2α-1)(cosα+sinα)}{\sqrt{2-2cos2α}}$
(2)已知tanβ=$\frac{1}{2}$,tan(α-β)=$\frac{1}{3}$,α,β均为锐角,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{a-\frac{2}{{e}^{x}+1},x≥0}\\{\frac{2}{{e}^{x}+1}-\frac{3}{2},x<0}\end{array}\right.$  
(1)当a=$\frac{1}{2}$时,判断函f(x)的奇偶性,并说明理由;
(2)若函数f(x)在(0,+∞)内有且只有一个零点,求实数α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列是同一个函数的是(  )
A.y=sin(arcsinx)与y=xB.y=arcsin(sinx)与y=x
C.y=cos(arccosx)与y=arccos(cosx)D.y=tan(arctanx)与y=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线kx-y+1-3k=0,当k变化是,所有直线恒过定点(  )
A.(0,0)B.(3,1)C.(1,3)D.(-1,-3)

查看答案和解析>>

同步练习册答案