精英家教网 > 高中数学 > 题目详情
若函数y=sin(2x+
π
4
)的图象按向量
a
方向平移可得到函数y=sin2x的图象,则
a
可以是(  )
分析:根据位移性质x方向“左移加,右移减”,y方向“上移加,下移减”可以得出结果.
解答:解:∵函数y=sin(2x+
π
4
)的图象按向量
a
方向平移可得到函数y=sin2x的图象
∴y方向平移量为0
对于x方向y=sin(2x+
π
4
)假设按向量
a
(i,0)移动可以得到y=sin2x
∴y=sin(2(x-i)+
π
4
)=y=sin(2x-2i+
π
4
)=y=sin(2x)
即-2i+
π
4
=2kπ    k∈Z
∴当k=0时,i=
π
8

a
为(
π
8
,0)
故答案为:A
点评:考查了正弦函数的平移特性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)存在实数α,使sinαcosα=1;
(2)存在实数α,使sinα+cosα=
3
2

(3)函数y=sin(
2
-2x)
是偶函数;
(4)方程x=
π
6
是函数y=cos(x-
π
6
)
图象的一条对称轴方程;
(5)若α,β是第一象限角,且α>β,则tanα>tanβ.
(6)把函数y=cos(2x+
π
12
)
的图象向右平移
π
12
个单位,所得的函数解析式为y=cos(2x-
π
12
)

其中正确命题的序号是
 
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin(
2
-2x)
是偶函数;
②函数y=sin(x+
π
4
)
在闭区间[-
π
2
π
2
]
上是增函数;
③直线x=
π
8
是函数y=sin(2x+
4
)
图象的一条对称轴;
④若cosx=-
1
3
,x∈(0,2π)
,则x=arcos(-
1
3
)或π+arcos(-
1
3

其中正确的命题的序号是:
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有四个命题:
①函数y=sin4x-cos4x的最小正周期是π.
②终边在直线y=±x上的角的集合是{α|α=
2
+
π
4
,k∈Z}

③函数y=sin(x-
π
2
)在[0,π]
上是减函数.
④连续函数f(x)定义在[2,4]上,若有f(2)•f(4)<0,要用二分法求f(x)的一个零点,精确度为0.1,则最多将进行5次二等分区间.
其中,真命题的编号是
①②④
①②④
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=sin(ωx+φ)(ω>0,|φ|≤
π
2
)
的图象如图,则y=
sin(2x+
π
3
)
sin(2x+
π
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=sin (x+θ)是偶函数,则θ的一个值可能是(  )

查看答案和解析>>

同步练习册答案