精英家教网 > 高中数学 > 题目详情
如图所示,正方体ABCD-A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1
③AC1与B1C所成的角是90°.
其中正确命题的序号是   
【答案】分析:由题意判断A-A1BD是一个正三棱锥,说明H是三角形A1BD的中心,判断①的正误;推出AH⊥平面CB1D1,判断②的正误;说明AC1与B1C垂直,判断③的正误.
解答:解:由于ABCD-A1B1C1D1是正方体,所以A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;
又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;
从而可得AC1⊥平面CB1D1,即AC1与B1C垂直,所成的角等于90°,③正确.
故答案为:①②③
点评:本题是基础题,考查正方体的有关直线与直线的位置关系,直线与平面的位置关系,考查空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1中,E、F分别是正方体ADD1A1和ABCD的中心,G是C1C的中点,设GF、C1F与AB所成的角分别为α、β,则α+β等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCDA1B1C1D1的棱长为1,点MAB上,且AMAB,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xAy中,动点P的轨迹方程是________.

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修2 1.2点 线 面之间的位置关系练习卷(解析版) 题型:解答题

(12分)如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.

 

查看答案和解析>>

同步练习册答案