【题目】已知m>0,n>0, +mn的最小值为t.
(1)求t值
(2)解关于x的不等式|x﹣1|<t+2x.
【答案】
(1)解:因为m>0,n>0,∴ ≥2 = ①,
则 ,而 ≥2 =4 ②,
所以 ③,当且仅当m=n时,①式等号成立,当且仅当 时,②式等号成立,
故当且仅当 时,③式等号成立,
即 取得最小值4,故t=4
(2)解:由(1)知,t=4时,则|x﹣1|<t+2x,∴﹣4﹣2x<x﹣1<4+2x,解得x>﹣1,
即原不等式的解集为(﹣1,+∞)
【解析】(1)利用基本不等式、不等式的性质求得 的最小值为4,从而求得t的值.(2)不等式|x﹣1|<4+2x,由此求得x的范围.
【考点精析】认真审题,首先需要了解基本不等式(基本不等式:,(当且仅当时取到等号);变形公式:),还要掌握绝对值不等式的解法(含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a2a4=21,数列{bn}满足 ,若 ,则n的最小值为( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+ a2﹣a(a>0):月需求量为y2吨,y2=﹣ x2﹣ x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知a= ,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F2 , P分别为双曲线 ﹣ =1(a>0,b>0)的右焦点与右支上的一点,O为坐标原点,若 = ( + ), = 且2 =a2+b2 , 则该双曲线的离心率为( )
A.
B.
C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com