精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
x+2y+1≥0
3x-y+3≥0
,若(-1,0)是使mx+y取得最大值的可行解,则实数m的取值范围是(  )
A、m≤3
B、m≤-3
C、m≥-
1
2
D、m≥
1
2
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对于的平面区域,利用数形结合即可得到结论.
解答: ,解:作出不等式组对于的平面区域如图:
设z=mx+y,得y=-mx+z,
则当y=-mx+z截距最大时,z也取得最大值,
要使若z=mx+y在点(1,0)处取得最大值
则不等式组对应的平面区域在直线y=-mx+z的下方,
-m>0
-m≥3
,即
m<0
m≤-3

解得m≤-3,
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正数x,y满足x+4y-xy=0,则x+2y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{x|y=log2(x-1)}用区间号表示为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
msinxcosx+mcos2x+n(m>0)在区间[0,
π
4
]
上的值域为[1,2].
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ) 在△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=1,sinB=4sin(π-C),△ABC的面积为
3
,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点M(2,0)的直线l与抛物线C:y2=4x相交于A,B两点,过点A,B分别作y轴的垂线交直线l′:y=-2x-2于点A′,B′.
(Ⅰ)若四边形A′B′BA是等腰梯形,求直线l的方程;
(Ⅱ)若A′,O,B,三点共线,求证:AB′与y轴平行;
(Ⅲ)若对于任意一个以AB为直径的圆,在直线x=m上总存在点Q在该圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设-5<a<5,集合M={x∈N|2x-(a+5)x-10=0}.若M≠?,则满足条件的所有实数a的和等于(  )
A、-
3
5
B、-
1
10
C、
1
10
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为a的正方体 ABCD-A1B1C1D1 中,AC 与BD相交于点O.
(Ⅰ)求直线 A1B 与平面ACC1A1所成的角; 
(Ⅱ)求二面角 A1-BD-A 的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c是△ABC的边长,设l是△ABC的内心,求
|IA|2
bc
+
|IB|2
ca
+
|IC|2
ab
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

6名外语翻译者中有4人会英语,另外2人会俄语.现从中抽出2人,则抽到英语,俄语翻译者各1人的概率等于
 

查看答案和解析>>

同步练习册答案