精英家教网 > 高中数学 > 题目详情
如图,在多面体中,四边形是正方形,.

(1)求证:面
(2)求证:.
(1)证明见解析;(2)见解析.

试题分析:(1)要证明面面垂直,需先证线面垂直.
利用四边形为正方形,证得,即 ,
再根据 
得证.
(2)注意利用“平行关系的传递性”.
通过取的中点,连结
应用三角形中位线定理得出四边形为平行四边形,即
从而得到
类似地,由面
,得出.
试题解析:证明:(1)四边形为正方形, ,
                                     2分
    
                                          4分
 
              6分

(2)取的中点,连结

四边形为平行四边形


    8分


四边形为平行四边形,且
是正方形,,且
为平行四边形,,
               10分

          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的中点.
 
(1)求证:BD⊥MC;
(2)线段AB上是否存在点E,使得AP∥平面NEC?若存在,说明在什么位置,并加以证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2ADADA1B1,∠BAD=60°.
 
(1)证明:AA1BD
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,.

(1)求直线与平面所成角的正弦值;
(2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a,b,c是三条直线,α,β是两个平面,b?α,c?α,则下列命题不成立的是(  )
A.若α∥β,c⊥α,则c⊥β
B.“若b⊥β,则α⊥β”的逆命题
C.若a是c在α内的射影,a⊥b,则b⊥c
D.“若b∥c,则c∥α”的逆否命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题:①⇒m⊥α;②⇒α⊥β;
⇒m∥n;④⇒m∥n
其中为真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在四边形ABCD中,ADBCADAB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD.则在三棱锥ABCD中,下列命题正确的是(  ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1 D1CA的体积为
④A1C⊥AB1,A1C⊥BC1, 其中正确的结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案