精英家教网 > 高中数学 > 题目详情

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用网络外卖

偶尔或不用网络外卖

合计

男性

50

50

100

女性

60

40

100

合计

110

90

200

(1)根据表中数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?

(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关;

(2)①;②答案见解析.

【解析】试题分析:

(1)由题意结合列联表计算可得可知的观测值 ,所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关;

(2)依题意可得经常使用网络外卖的有人,偶尔或不用网络外卖的有人.则选出的3人中至少有2人经常使用网络外卖的概率为.

由题意可得,随机变量服从二项分布,则 .

试题解析:

(1)由列联表可知的观测值

所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.

(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),

偶尔或不用网络外卖的有(人). 

则选出的3人中至少有2人经常使用网络外卖的概率为.

②由列联表,可知抽到经常使用网络外卖的网民的概率为

将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为.

由题意得,∴ .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且满足Sn=2﹣an , n=1,2,3,….
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an , 求数列{bn}的通项公式;
(3)设cn=n(3﹣bn),求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, .

(Ⅰ)证明:

(Ⅱ)平面 平面 ,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列的前三项和为6,且成等比数列

1)求数列的通项公式;

2)设,数列的前项和为,求使的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求证:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin2x的图象向左平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当,的单调区间;

(2)若求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某招聘会上,有5个条件很类似的求职者,把他们记为A,B,C,D,E,他们应聘秘书工作,但只有2个秘书职位,因此5人中仅有2人被录用,如果5个人被录用的机会相等,分别计算下列事件的概率:
(1)C得到一个职位
(2)B或E得到一个职位.

查看答案和解析>>

同步练习册答案