精英家教网 > 高中数学 > 题目详情

【题目】2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的 ,则此次统考中成绩不低于120分的学生人数约为(
A.80
B.100
C.120
D.200

【答案】D
【解析】解:∵成绩ξ~N(100,σ2), ∴其正态曲线关于直线x=100对称,
又∵成绩在80分到120分之间的人数约占总人数的
由对称性知:成绩不低于120分的学生约为总人数的 =
∴此次考试成绩不低于120分的学生约有: ×1600=200人.
故选D.
利用正态分布曲线的对称性,确定成绩不低于120分的学生约为总人数的 = ,即可求得成此次考试成绩不低于120分的学生数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】庄子说:“一尺之锤,日取其半,万世不竭”,这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈( ),则输入的n的值为( )

A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx﹣3x2﹣11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.
(Ⅰ)证明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的前 项和为 ,且满足
(1)求数列 的通项公式
(2)设 ,令 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为
下面的临界值表仅供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中n=a+b+c+d)
(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在一个边长为1的正方形AOBC内,曲线y=x3(x>0)和曲线y= 围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),圆Q:(x﹣2)2+(y﹣ 2=2的圆心Q在椭圆C上,点P(0, )到椭圆C的右焦点的距离为
(1)求椭圆C的方程;
(2)过点P作互相垂直的两条直线l1 , l2 , 且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.

查看答案和解析>>

同步练习册答案