精英家教网 > 高中数学 > 题目详情
15.如图,M为椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,F1是它的下焦点,F1也是抛物线x2=-4y的焦点,直线MF1与椭圆C的另一个交点为N,满足$\overrightarrow{M{F}_{1}}$=$\frac{5}{3}$$\overrightarrow{{F}_{1}N}$
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B不是上下顶点),且满足AA2⊥BA2(A2为上顶点),求证:直线l过定点,并求出该定点的坐标.

分析 (1)由题意可得M(-b,0),抛物线x2=-4y的焦点为(0,-1),即有F1(0,-1),设N(m,n),再也向量共线的坐标表示,运用代入法,解方程可得a,b,进而得到椭圆方程;
(2)联立直线方程和椭圆方程,运用韦达定理,由两直线垂直的条件:斜率之积为-1,化简整理,可得m的值,再由直线方程,可得定点.

解答 解:(1)由题意可得M(-b,0),抛物线x2=-4y的焦点为(0,-1),
即有F1(0,-1),设N(m,n),
由$\overrightarrow{M{F}_{1}}$=$\frac{5}{3}$$\overrightarrow{{F}_{1}N}$,可得b=$\frac{5}{3}$m,-1=$\frac{5}{3}$(n+1),
即为m=$\frac{3}{5}$b,n=-$\frac{8}{5}$,代入椭圆方程可得,
$\frac{64}{25{a}^{2}}$+$\frac{9}{25}$=1,解得a2=4,
又c=1,可得b2=a2-c2=3,
则椭圆方程为$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1;
(2)证明:由题意可得A2(0,2),
设A(x1,y1),B(x2,y2),
由直线y=kx+m和椭圆方程联立,可得
(4+3k2)x2+6kmx+3m2-12=0,
则x1+x2=-$\frac{6km}{4+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-12}{4+3{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
y1+y2=k(x1+x2)+2m,
由AA2⊥BA2,可得$\frac{{y}_{1}-2}{{x}_{1}}$•$\frac{{y}_{2}-2}{{x}_{2}}$=-1,
即为x1x2+(y1-2)(y2-2)=0,
即有(1+k2)x1x2+m2+(km-2k)(x1+x2)+4-4m=0,
即(1+k2)(3m2-12)+(m-2)2(4+3k2)+k(m-2)(-6km)=0,
化简可得m=2(舍去)或m=$\frac{2}{7}$,
则直线方程为y=kx+$\frac{2}{7}$,则直线恒过定点(0,$\frac{2}{7}$).

点评 本题考查椭圆的方程的求法,注意运用抛物线的焦点和向量共线的坐标表示,考查直线恒过定点的问题,注意运用直线和椭圆方程联立,运用韦达定理和两直线垂直的条件,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax3+bx+c的图象过点(0,-16),且在x=1处的切线方程是y=4x-18.
(1)求函数y=f(x)的解析式;
(2)若直线为曲线y=f(x)的切线,且经过原点,求直线的方程及切点坐标;
(3)若函数g(x)=x3+x2-lnx,记F(x)=f(x)-g(x),求函数y=F(x)在区间$[\frac{1}{2},3]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在区间[-a,a]上的奇函数,若g(x)=f(x)+2,则g(x)的最大值与最小值之和为(  )
A.0B.2C.4D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,当λ=$\frac{2}{3}$时,则$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值为$\frac{58}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-2,$\sqrt{3}$)为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1内一点,F2为其右焦点,M为椭圆上一动点.
(1)求|AM|+|MF2|的最大值;
(2)求|AM|+2|MF2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线1的方程为x+(a-1)y+a2-1=0.
(1)若直线1不过第二象限,求实数a的取值范围;
(2)若直线1将圆x2+y2-2mx-4y=0平分,当m取得最大值时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga(x+1),g(x)=loga(1-x),其中(a>0且a≠1).
(1)求函数h(x)=f(x)-g(x)的定义域,并证明h(x)的奇偶性;
(2)根据复合函数单调性理论判断g(x)的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(-1,2),B(1,3),在直线y=2x上求一点P,使|PA|2+|PB|2取得最小值,并写出P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-k)ex,求f(x)在区间[0,1]上的最大值.

查看答案和解析>>

同步练习册答案