精英家教网 > 高中数学 > 题目详情
15.已知$\left\{\begin{array}{l}{-2x+y≤2}\\{x-2y≤2}\\{x+y≤5}\\{x≥0,y≥0}\end{array}\right.$,则-x+y的最大值是3.

分析 首先画出平面区域.设z=-x+y,由它的几何意义求最大值.

解答 解:已知不等式组表示的平面区域如图:

由$\left\{\begin{array}{l}{-2x+y=2}\\{x+y=5}\end{array}\right.$解得C(1,4)
设z=-x+y即y=x+z当过图中C时使得z最大,最大为-1+4=3;
故答案为:3.

点评 本题考查了简单的线性规划问题;关键是正确画出平面区域,根据目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.cos(α+β)cosβ+sin(α+β)sinβ=cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,平均成绩为z,则从频率分布直方图中可分析出x、y、z的值分别为(  )
A.0.9,35,15.86B.0.9,45,15.5C.0.1,35,16D.0.1,45,16.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.2个红球,3个黄球,排成一排,同色球不区分,则共有10(用数字作答)种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的通项公式an=-n2+13n-$\frac{133}{4}$.当a1a2a3+a2a3a4+a3a4a5+…+anan+1an+2取得最大值时,n的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二次函数f(x)=ax2+bx+c(a>0)的零点为2和3,那么不等式ax2+bx+c<0的解集为(  )
A.{x|2<x<3}B.{x|-3<x<-2}C.{x|$\frac{1}{3}$<x$<\frac{1}{2}$}D.{x|-$\frac{1}{2}$<x$<-\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量 ξ 的分布列为P(ξ=k)=$\frac{1}{{2}^{k}}$( k=1,2,…),则 P(2<x≤4)为(  )
A.$\frac{3}{16}$B.$\frac{1}{4}$C.$\frac{1}{16}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.利用计算器算出自变量和函数值的对应值如表,则方程2x-x2=0的一个根所在区间为(1.8,2.2).
x0.20.61.01.41.82.22.63.03.4
y=2x1.1491.5162.02.6393.4824.5956.0638.010.556
y=x20.040.361.01.963.244.846.769.011.56

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:填空题

已知函数,若关于的方程有且只有四个不相等的实数根,则实数的取值范围是____________.

查看答案和解析>>

同步练习册答案