精英家教网 > 高中数学 > 题目详情
已知f(x)、g(x)分别是R上的奇函数、偶函数,且f(x)-g(x)=ex
(Ⅰ)f(x),g(x)的解析式;
(Ⅱ)证明:f(x)在(-∞,+∞)上是增函数.
【答案】分析:(Ⅰ)由题意用-x代替x,得f(-x)-g(-x)=e-x,利用f(x)、g(x)分别是R上的奇函数、偶函数,转化为关于
f(x)和g(x)另外一个方程,再与已知方程联列,解之可得f(x),g(x)的解析式;
(Ⅱ)由(I)得,求出其导函数,可以得出导函数在(-∞,+∞)上恒为负值,因此可得f(x)在(-∞,+∞)上是增函数.
解答:解:(Ⅰ)∵f(x),g(x)分别为R上的奇函数,偶函数f(x)-g(x)=ex①∴f(-x)-g(-x)=e-x∴-f(x)-g(x)=e-x②①-②得:
①+②得:
(Ⅱ)证明:由(1)知
所以 ,即导函数在(-∞,+∞)上恒为正值
因此f(x)在(-∞,+∞)上为增函数
点评:本题考查了用函数奇偶性来求函数的解析式和利用导数研究函数的单调性,属于中档题.解决的关键是利用替换列出另外一个方程,再用函数奇偶性结合方程思想求出函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有穷数列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k项相加,则前k项和大于
15
16
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,则使数列{an}的前n项和Sn超过
15
16
的最小自然数n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,对于有穷数列
f(n)
g(n)
=(n=1,2,…0)
,任取正整数k(1≤k≤10),则前k项和大于
15 
16
的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,则a的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

同步练习册答案