精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足:a1=$\frac{1}{7}$,对于任意的n∈N*,an+1=$\frac{7}{2}$an(1-an),则a2015-a2016=(  )
A.-$\frac{2}{7}$B.$\frac{2}{7}$C.-$\frac{3}{7}$D.$\frac{3}{7}$

分析 a1=$\frac{1}{7}$,对于任意的n∈N*,an+1=$\frac{7}{2}$an(1-an),可得a2=$\frac{7}{2}{a}_{1}(1-{a}_{1})$=$\frac{3}{7}$,同理可得:a3=$\frac{6}{7}$,a4=$\frac{3}{7}$,…,可得当n≥2时,an+2=an.即可得出.

解答 解:∵a1=$\frac{1}{7}$,对于任意的n∈N*,an+1=$\frac{7}{2}$an(1-an),
∴a2=$\frac{7}{2}{a}_{1}(1-{a}_{1})$=$\frac{7}{2}×\frac{1}{7}×\frac{6}{7}$=$\frac{3}{7}$,
a3=$\frac{7}{2}×\frac{3}{7}×\frac{4}{7}$=$\frac{6}{7}$,
a4=$\frac{3}{7}$,…,
∴当n≥2时,an+2=an
则a2015-a2016=a1+1007×2-a1+1007×2+1
=a3-a2
=$\frac{6}{7}-\frac{3}{7}$
=$\frac{3}{7}$.
故选:D.

点评 本题考查了递推关系的应用、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若(2x+$\frac{1}{x}$)n展开式中含$\frac{1}{{x}^{2}}$项的系数与含$\frac{1}{{x}^{4}}$项的系数之比为5,则n=(  )
A.4B.5C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=$\left\{\begin{array}{l}{sinx,-\frac{π}{2}≤x≤0}\\{a(x-1)+1,x>0}\end{array}\right.$在(-$\frac{π}{2}$,+∞)上单调递增,实数a的取值范围(  )
A.(0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,(e≈2.71),则
(1)函数g(f(x))的单调递增区间为(0,+∞);
(2)若有g(f(a))=f(b)+1,实数b的取值范围为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法中错误的是(  )
A.对于命题p:?x0∈R,使得x0+$\frac{1}{{x}_{0}}$>2,则¬p:?x∈R,均有x+$\frac{1}{x}$≤2
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若Sn=3n+2n+1,则an=(  )
A.an=$\left\{\begin{array}{l}{6,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$B.an=2×3n-1
C.an=2×3n-1+2D.an=$\left\{\begin{array}{l}{6,n=1}\\{2×{3}^{n-1}+2,n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${a_{k_n}}∈\{{a_1},{a_2},…{a_n},…\}$,且${a_{k_1}},{a_{k_2}},…,{a_{k_n}},…$成等比数列,当k1=2,k2=4时,求数列{kn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x}+3,}&{a<0}\\{(3-a)x+2a,}&{x≥0}\end{array}\right.$,对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则a的取值范围是(  )
A.(1,3)B.(1,2)C.[2,3)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:x+y-1=0,
(1)若直线l1过点(3,2)且l1∥l,求直线l1的方程;
(2)若直线l2过l与直线2x-y+7=0的交点,且l2⊥l,求直线l2的方程.

查看答案和解析>>

同步练习册答案