【题目】已知为实数,函数,且函数是偶函数,函数在区间上的减函数,且在区间上是增函数.
(1)求函数的解析式;
(2)求实数的值;
(3)设,问是否存在实数,使得在区间上有最小值为?若存在,求出的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)对定义域的每一个值x1,在其定义域均存在唯一的x2,满足f(x1)f(x2)=1,则称该函数为“依赖函数”.
(1)判断,y=2x是否为“依赖函数”;
(2)若函数y=a+sinx(a>1), 为依赖函数,求a的值,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中正确的个数是( ).
①在中,若,则是等腰三角形;
②在中,若 ,则
③两个向量,共线的充要条件是存在实数,使
④等差数列的前项和公式是常数项为0的二次函数.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,底面为菱形,,,平面,,.
(1)若点,分别在,上,且,,证明平面.
(2)若平面平面,求平面把多面体分成大、小两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中真命题是( )
(1)在的二项式展开式中,共有项有理项;
(2)若事件、满足,,,则事件、是相互独立事件;
(3)根据最近天某医院新增疑似病例数据,“总体均值为,总体方差为”,可以推测“最近天,该医院每天新增疑似病例不超过人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、.经过点且倾斜角为的直线与椭圆交于、两点(其中点在轴上方),的周长为8.
(1)求椭圆的标准方程;
(2)如图,把平面沿轴折起来,使轴正半轴和轴确定的半平面,与负半轴和轴所确定的半平面互相垂直.
①若,求异面直线和所成角的大小;
②若折叠后的周长为,求的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com