【题目】已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是( )
A.x∈R,f(x)≤f(x0)
B.x∈R,f(x)≥f(x0)
C.x∈R,f(x)≤f(x0)
D.x∈R,f(x)≥f(x0)
科目:高中数学 来源: 题型:
【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛两次,记第一次出现的点数为 ,第二次出现的点数为 ,则事件“ ”的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是由正整数构成的数表,用aij表示i行第j个数(i,j∈N+).此表中ail=aii=i,每行中除首尾两数外,其他各数分别等于其“肩膀”上的两数之和.
(1)写出数表的第六行(从左至右依次列出).
(2)设第n行的第二个数为bn(n≥2),求bn.
(3)令,记Tn为数列前n项和,求的最大值,并求此时n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】P(x0 , y0)(x0≠±a)是双曲线E: 上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为 .
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足 ,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是 .
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】E为正四面体D﹣ABC棱AD的中点,平面α过点A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,则m、n所成角的余弦值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 在椭圆C: 上,F为右焦点,PF⊥垂直于x轴,A,B,C,D为椭圆上的四个动点,且AC,BD交于原点O.
(1)求椭圆C的方程;
(2)判断直线l: 与椭圆的位置关系;
(3)设A(x1 , y1),B(x2 , y2)满足 = ,判断kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com