精英家教网 > 高中数学 > 题目详情
19.求函数y=-$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$的单调区间.

分析 利用换元法结合复合函数单调性之间的关系进行求解即可.

解答 解:由x2+2x-3≥0,得x≥1或x≤-3,即函数的定义域为{x|x≥1或x≤-3},
设u=$\sqrt{t}$,t=x2+2x-3,对称轴为x=-1,
则y=-$\frac{1}{2}$u为减函数,u=$\sqrt{t}$,在定义域上为增函数,
当x≤-3时,函数t=x2+2x-3为减函数,而u=$\sqrt{t}$为增函数,y=-$\frac{1}{2}$u为减函数,
∴此时函数y=-$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$为增函数,即函数的单调递增区间为(-∞,-3],
当x≥1时,函数t=x2+2x-3为增函数,而u=$\sqrt{t}$为增函数,y=-$\frac{1}{2}$u为减函数,
∴此时函数y=-$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$为减函数,即函数的单调递减区间为[1,+∞)

点评 本题主要考查函数单调递减区间的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga$\frac{3+x}{3-x}$(a>1).
(1)讨论函数f(x)的单调性;
(2)若f(x)≥loga(2x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设A,B,C是抛物线y=x2上的三点,若直线AB过定点(-1,0),直线BC过定点(1,-2),则直线AC也过定点,其坐标为(-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)满足对于定义域内任意的实数x,y都有f(x+y)=$\frac{f(x)+f(y)}{1+f(x)f(y)}$,且当x>0时,-1<f(x)<0.
(1)判断f(x)的奇偶性并证明.
(2)判断并证明函数f(x)的单调性.
(3)解关于x的不等式f(ax2+2)<f(ax+2x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)是否有闭区间上连续函数,使得每个函数值恰好取一次?
(2)是否有闭区间上连续函数,使得每个函数恰好取二次?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k},其中k为正常数,设u=x1x2
(1)若k=2,求u的取值范围;
(2)若k=2,(x1,x2)∈D,求($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)的最大值;
(3)若不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}$-$\frac{2}{k}$)2对任意(x1,x2)∈D恒成立,求k4+16k2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={y|y=log2(-x2+2x+3),x∈(1-$\sqrt{3}$,2)},B={x||2x-3|-2-xloga(2a2-1)≥0}.
(1)求集合A;
(2)求实数a的取值范围,使得A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\sqrt{{x}^{2}-2x-3}$的递减区间是(-∞,-1],递增区间是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x,y∈R,求证:$\frac{{x}^{2}+{y}^{2}}{2}$≥($\frac{x+y}{2}$)2

查看答案和解析>>

同步练习册答案