精英家教网 > 高中数学 > 题目详情

【题目】某校同时提供两类线上选修课程,类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分;类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分.每周开设次,共开设周,每次均为独立内容,每次只能选择类、类课程中的一类学习.当选择类课程次,类课程次时,可获得总积分共_______分.如果规定学生观看直播总时间不得少于分钟,课后作业总时间不得少于分钟,则通过线上选修课的学习,最多可以获得总积分共________分.

【答案】

【解析】

根据题意可计算出当选择类课程次,类课程次时,可获得的总积分;设学生选择类选修课次,类选修课次,根据题意列出有关的约束条件,可得出目标函数为,利用线性规划思想可求得的最大值,进而得解.

根据题意,当选择类课程次,类课程次时,可获得总积分.

设学生选择类选修课次,类选修课次,

所满足的约束条件为,即,目标函数为,如下图所示:

则可行域为图中阴影部分中的整数点(横坐标和纵坐标均为整数的点),

联立,解得,可得点

平移直线,当直线经过可行域的顶点时,直线轴上的截距最大,此时取最大值,即.

因此,通过线上选修课的学习,最多可以获得总积分共.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分成抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按初中学生高中学生分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[010),[1020),[2030),[3040),[4050],并分别加以统计,得到如图所示的频率分布直方图.

1)写出的值;试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
2)从阅读时间不足10个小时的样本学生中随机抽取3人,并用表示其中初中生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级有男生人,学号为;女生人,学号为.对高三学生进行问卷调查,按学号采用系统抽样的方法,从这名学生中抽取人进行问卷调查(第一组采用简单随机抽样,抽到的号码为);再从这名学生中随机抽取人进行数据分析,则这人中既有男生又有女生的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若曲线在点处的切线与直线垂直,求的单调性和极小值(其中为自然对数的底数);

2)若对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业引进现代化管理体制,生产效益明显提高,2019年全年总收入与2018年全年总收入相比增长了一倍,同时该企业的各项运营成本也随着收入的变化发生相应变化,下图给出了该企业这两年不同运营成本占全年总收入的比例,下列说法错误的是(

A.该企业2019年研发的费用与原材料的费用超过当年总收入的50%

B.该企业2019年设备支出金额及原材料的费用均与2018相当

C.该企业2019年工资支出总额比2018年多一倍

D.该企业2018年与2019研发的总费用占这两年总收入的20%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为等边三角形,EF分别为的中点,.

1)证明:平面

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,,有下述四个结论:

①若的重心,则

②若边上的一个动点,则为定值2

③若边上的两个动点,且,则的最小值为

④已知内一点,若,且,则的最大值为2

其中所有正确结论的编号是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一所示,四边形是边长为的正方形,沿点翻折到点位置(如图二所示),使得二面角成直二面角.分别为的中点.

1)求证:

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为1的正方形区域OABC内有以OA为半径的圆弧.现决定从AB边上一点D引一条线段DE与圆弧相切于点E,从而将正方形区域OABC分成三块:扇形COE为区域I,四边形OADE为区域II,剩下的CBDE为区域III.区域I内栽树,区域II内种花,区域III内植草.每单位平方的树、花、草所需费用分别为,总造价是W,设

1)分别用表示区域IIIIII的面积;

2)将总造价W表示为的函数,并写出定义域;

3)求为何值时,总造价W取最小值?

查看答案和解析>>

同步练习册答案