精英家教网 > 高中数学 > 题目详情

【题目】已知图甲中的图象对应的函数y=f(x),则图乙中的图象对应的函数在下列给出的四式中只可能是(  )

A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)

【答案】C
【解析】解:由图二知,图象关于y轴对称,对应的函数是偶函数,
对于A,当x>0时,y=f(|x|)=y=f(x),其图象在y轴右侧与图一的相同,不合,故错;
对于B:当x>0时,对应的函数是y=f(x),显然B也不正确.
对于D:当x<0时,y=﹣|f(﹣|x|)|=﹣|f(x)|,其图象在y轴左侧与图一的不相同,不合,故错;
故选C.
【考点精析】根据题目的已知条件,利用函数图象的作法的相关知识可以得到问题的答案,需要掌握图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos(ωx+φ)(ω>0,|φ|< )的图象上的每一点的纵坐标不变,横坐标缩短为原来的一半,再将图象向右平移 个单位长度得到函数y=sinx的图象.
(1)直接写出f(x)的表达式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在区间上的最大值;

2)若过点存在3条直线与曲线相切,求t的取值范围;

3)问过点分别存在几条直线与曲线相切?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为偶函数,当时, , 满足的实数的个数为( )

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+b)(其中a,b为常数,且a>0,a≠1)的图象经过点A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函数g(x)=( 2x﹣( x﹣1,x∈[0,+∞),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,

(1)若方程C表示圆,求实数m的范围;

(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(x2﹣2x﹣3)的单调减区间是(  )
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,双曲线 =1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为

查看答案和解析>>

同步练习册答案