精英家教网 > 高中数学 > 题目详情

【题目】

(2015·重庆)如题(20)图,三棱锥中,平面平面,,点D、E在线段上,且,在线段上,且


(1)证明:平面.
(2)若四棱锥P-DFBC的体积为7,求线段BC的长。

【答案】
(1)

证明:如题(20)图。由 D E = E C , P D = P C 知, E 为等腰 △ P D C 中 D C 边的中点,故 P E ⊥ A C ,

又平面平面,平面.平面,平面,,

所以平面,从而.

,故.

从而与平面内两条相交直线都垂直,

所以平面


(2)

.


【解析】
1、证明:如题(20)图。由知,为等腰边的中点,故,

又平面平面,平面.平面,平面,,
所以平面,从而.
,故.
从而与平面内两条相交直线都垂直,
所以平面
2、设,则在直角中,
从而
,知,得,故


从而四边形DFBC的面积为
由小题1知,平面,所以为四棱锥的高。
在直角中,,
体积
故得,解得,由于,可得
所以
【考点精析】解答此题的关键在于理解空间中直线与平面之间的位置关系的相关知识,掌握直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I所示

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又存在零点的是( )
A.y=lnx
B.
C.y=sinx
D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,已知椭圆:的离心率为,左、右焦点分别是F1,F2 , 以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆上.
(1)求椭圆的方程;
(2)设椭圆:为椭圆上任意一点,过点的直线y=kx=m交椭圆,两点,射线交椭圆于点.
(1)求的值;
(1)求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
在如图所示的阳马P-ABCD中,侧棱PD底面ABCD,且PD=CD,点E是BC的中点,连接DE,BD,BE
(I)证明:DE底面PBC,试判断四面体EBCD是否为鳖臑. 若是,写出其四个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马的体积为,四面体的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程中仅有一个实根的是 ,(写出所有正确条件的编号)
1、a=-3,b=-3;2.a=-3,b=2;3、a=-3,b2;4、a=0,b=2;5、a=1,b=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设f(x)=lnx, 0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是( )
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且(n=1,2,...).记
集合
(1)(Ⅰ)若,写出集合M的所有元素;
(2)(Ⅱ)若集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(3)(Ⅲ)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数发f(x)=(x+1)lnx﹣ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证: ,n∈N*

查看答案和解析>>

同步练习册答案