£¨2012•ÉعضþÄ££©ÔÚÖ±½Ç×ø±êϵxOyÖУ¬¶¯µãPÓ붨µãF£¨1£¬0£©µÄ¾àÀëºÍËüµ½¶¨Ö±Ïßx=2µÄ¾àÀëÖ®±ÈÊÇ
2
2
£¬É趯µãPµÄ¹ì¼£ÎªC1£¬QÊǶ¯Ô²C2£ºx2+y2=r2£¨1£¼r£¼2£©ÉÏÒ»µã£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£C1µÄ·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊÇʲôͼÐΣ»
£¨2£©ÉèÇúÏßC1ÉϵÄÈýµãA(x1£¬y1)£¬B(1£¬
2
2
)£¬C(x2£¬y2)
ÓëµãFµÄ¾àÀë³ÉµÈ²îÊýÁУ¬ÈôÏ߶ÎACµÄ´¹Ö±Æ½·ÖÏßÓëxÖáµÄ½»µãΪT£¬ÇóÖ±ÏßBTµÄбÂÊk£»
£¨3£©ÈôÖ±ÏßPQÓëC1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖª£¬µÃ
(x-1)2+y2
|2-x|
=
2
2
£¬ÓÉ´ËÄÜÇó³ö¶¯µãPµÄ¹ì¼£C1µÄ·½³ÌºÍ¹ì¼£ÊÇʲôͼÐΣ®
£¨2£©ÓÉÒÑÖª¿ÉµÃ|AF|=
2
2
(2-x1)
£¬|BF|=
2
2
(2-1)
£¬|CF|=
2
2
(2-x2)
£¬ÒòΪ2|BF|=|AF|+|CF|£¬ËùÒÔx1+x2=2£¬¹ÊÏ߶ÎACµÄÖеãΪ(1£¬
y1+y2
2
)
£¬Æ䴹ֱƽ·ÖÏß·½³ÌΪy-
y1+y2
2
=-
x1-x2
y1-y2
(x-1)
£¬ÓÉ´ËÄÜÇó³öÖ±ÏßBTµÄбÂÊ£®
£¨3£©ÉèP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬Ö±ÏßPQµÄ·½³ÌΪy=kx+m£¬ÒòΪP¼ÈÔÚÍÖÔ²C1ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬ÓÉ´ËÄÜÇó³öP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬µÃ
(x-1)2+y2
|2-x|
=
2
2
£¬¡­£¨2·Ö£©£®
½«Á½±ßƽ·½£¬²¢»¯¼òµÃ
x2
2
+y2=1
£¬¡­£¨4·Ö£©£®
¹Ê¹ì¼£C1µÄ·½³ÌÊÇ
x2
2
+y2=1
£¬
ËüÊdz¤Öá¡¢¶ÌÖá·Ö±ðΪ2
2
¡¢2µÄÍÖÔ²¡­£¨4·Ö£©£®
£¨2£©ÓÉÒÑÖª¿ÉµÃ|AF|=
2
2
(2-x1)
£¬|BF|=
2
2
(2-1)
£¬|CF|=
2
2
(2-x2)
£¬
ÒòΪ2|BF|=|AF|+|CF|£¬ËùÒÔ
2
2
(2-x1)
+
2
2
(2-x2)
=2¡Á
2
2
(2-1)
£¬
¼´µÃx1+x2=2£¬¢Ù¡­£¨5·Ö£©£®
¹ÊÏ߶ÎACµÄÖеãΪ(1£¬
y1+y2
2
)
£¬
Æ䴹ֱƽ·ÖÏß·½³ÌΪy-
y1+y2
2
=-
x1-x2
y1-y2
(x-1)
£¬¢Ú¡­£¨6·Ö£©£®
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
x12
2
+y12=1
£¬
x22
2
+y22=1
£¬
Á½Ê½Ïà¼õ£¬µÃ£º
x12-x22
2
+y12-y22=0
¢Û
½«¢Ù´úÈë¢Û£¬»¯¼òµÃ-
x1-x2
y1-y2
=
2(y1+y2)
x1+x2
=y1+y2
£¬¢Ü¡­£¨7·Ö£©£®
½«¢Ü´úÈë¢Ú£¬²¢Áîy=0µÃ£¬x=
1
2
£¬
¼´TµÄ×ø±êΪ(
1
2
£¬0)
£®¡­£¨8·Ö£©£®
ËùÒÔkBT=
2
2
-0
1-
1
2
=
2
£®¡­£¨9·Ö£©£®
£¨3£©ÉèP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬
Ö±ÏßPQµÄ·½³ÌΪy=kx+m£¬
ÒòΪP¼ÈÔÚÍÖÔ²C1ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬
´Ó¶øÓÐ
y1=kx1+m
x12
2
+y12=1

¡à£¨2k2+1£©x2+4kmx+2£¨m2-1£©=0¡­£¨10·Ö£©£®
ÓÉÓÚÖ±ÏßPQÓëÍÖÔ²C1ÏàÇУ¬¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0
´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
2k
m
£¬
ͬÀí£¬ÓÉQ¼ÈÔÚÔ²C2ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬¿ÉµÃm2=r2£¨1+k2£©£¬x2=-
2k
m
¡­£¨12·Ö£©
¡àk2=
r2-1
2-r2
£¬x2-x1=
k(2-r2)
m

ËùÒÔ|PQ|2=(x2-x1)2+(y2-y1)2=(1+k2)(x2-x1)2
=
m2
r2
k2(2-r2)2
m2
=
(2-r2)2
r2
r2-1
2-r2

=
(2-r2)(r2-1)
r2
=3-r2-
2
r2
¡Ü3-2
2
=(
2
-1)2
¡­£¨13·Ö£©£®
¼´|PQ|¡Ü
2
-1
£¬µ±ÇÒ½öµ±r2=
2
ʱȡµÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ
2
-1
£®¡­£¨14·Ö£©£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉعضþÄ££©ÊýÁÐ{an}¶ÔÈÎÒân¡ÊN*£¬Âú×ãan+1=an+1£¬a3=2£®
£¨1£©ÇóÊýÁÐ{an}ͨÏʽ£»
£¨2£©Èôbn=(
13
)an+n
£¬Çó{bn}µÄͨÏʽ¼°Ç°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉعضþÄ££©ÒÑÖªAÊǵ¥Î»Ô²Éϵĵ㣬ÇÒµãAÔÚµÚ¶þÏóÏÞ£¬µãBÊÇ´ËÔ²ÓëxÖáÕý°ëÖáµÄ½»µã£¬¼Ç¡ÏAOB=¦Á£¬ÈôµãAµÄ×Ý×ø±êΪ
3
5
£®Ôòsin¦Á=
3
5
3
5
£»tan£¨¦Ð-2¦Á£©=
24
7
24
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉعضþÄ££©ÒÑÖªRÊÇʵÊý¼¯£¬M={x|x2-2x£¾0}£¬NÊǺ¯Êýy=
x
µÄ¶¨ÒåÓò£¬ÔòN¡ÉCRM=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉعضþÄ££©¶¨Òå·ûºÅº¯Êýsgnx=
1£¬x£¾0
0£¬x=0
-1£¬x£¼0
£¬Éèf£¨x£©=
sgn(
1
2
-x)+1
2
•f1£¨x£©+
sgn( x-
1
2
)+1 
2
•f2£¨x£©£¬x¡Ê[0£¬1]£¬Èôf1£¨x£©=x+
1
2
£¬f2£¨x£©=2£¨1-x£©£¬Ôòf£¨x£©µÄ×î´óÖµµÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉعضþÄ££©ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÆäÖÐc=2£¬ÇÒ
cosA
cosB
=
b
a
=
3
1
£®
£¨1£©ÇóÖ¤£º¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
£¨2£©ÉèÔ²O¹ýA£¬B£¬CÈýµã£¬µãPλÓÚÁÓ»¡
AC
ÉÏ£¬¡ÏPAB=¦È£¬ÓæȵÄÈý½Çº¯Êý±íʾÈý½ÇÐΡ÷PACµÄÃæ»ý£¬²¢Çó¡÷PACÃæ»ý×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸