精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点.

1)求椭圆的方程;

2)设线段的垂直平分线与轴交于点,求的面积的取值范围.

【答案】1;(2.

【解析】试题分析:(1)根据椭圆的离心率,且椭圆经过点列关于的方程组,解出的值,就可求得椭圆的方程;(2)设直线的方程为).由消去并整理得,先求得线段的垂直平分线的方程,进而得 ,进而,可得结果.

试题解析:(1)设椭圆的方程为),

解得

故椭圆的方程为

2)设直线的方程为).

消去并整理得.易知

,则

的中点,则

线段的垂直平分线的方程为

,得

因为,所以

因为

所以的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低硕族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

(1)补全频率分布直方图并求的值(直接写结果);

(2)从年龄段在低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示该同学为这个开学季购进了160盒该产品,以单位:盒,表示这个开学季内的市场需求量,单位:元表示这个开学季内经销该产品的利润

I根据直方图估计这个开学季内市场需求量的众数和中位数;

II表示为的函数;

III根据直方图估计利润不少于4800元的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线轴交于点,直线轴交于点.

(1)求圆的方程

(2)求证: 为定值

(3)当取得最大值时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国一带一路战略构思提出后, 某科技企业为抓住一带一路带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设能全部.

(1)求年利润 (万元)年产(台)的函数关系式;

(2)年产为多少台时 ,该企业在这一电子设的生产中所获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,底面上的一点,.

(1)证明:平面

(2)设二面角,求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)过作直线交椭圆于两点,使,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产产品的年固定成本为250万元,每生产千件需另投入成本万元,当年产量不足80千件时(万元);当年产量不小于80千件时(万元),每千件产品的售价为50万元,该厂生产的产品能全部售完.

(1)写出年利润万元关于(千件)的函数关系;

(2)当年产量为多少千件时该厂当年的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:生产1单位试剂需要原料费50元;支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;后续保养的平均费用是每单位试剂的总产量为单位,.

1把生产每单位试剂的成本表示为的函数关系,并求的最小值;

2如果产品全部卖出,据测算销售额关于产量单位的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?

查看答案和解析>>

同步练习册答案