【题目】已知函数,若方程有两个不等实根、,且,则实数的取值范围为________
【答案】
【解析】
作出函数f(x)的图象,根据分段函数的关系,结合一元二次函数的对称性,利用数形结合进行求解即可.
解:作出函数f(x)的图象如图:
由x2+x+1=5x﹣2得x2﹣4x+3=0得x=1或x=3,
即y=x2+x+1与y=5x﹣2的交点坐标为(1,3),(3,12),
当x≤1时,y=x2+x+1=(x)2,抛物线的对称轴为x,
若方程f(x)=m有两个不相等的实数根x1、x2,
则m,
若x1+x2<﹣1,
则,
即两个函数的交点(x1、f(x1)),(x2、f(x2))的中点在x的左侧,
即当x>1时,x2+x+1<5x﹣2,即1<x<3,
此时3<f(x)<13,
即3<m<13,
故答案为:(3,13)
科目:高中数学 来源: 题型:
【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,是的导函数,则下列结论中错误的个数是( )
①函数的值域与的值域相同;
②若是函数的极值点,则是函数的零点;
③把函数的图像向右平移个单位长度,就可以得到的图像;
④函数和在区间内都是增函数.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某沿海地区计划铺设一条电缆联通A,B两地,A地位于东西方向的直线MN上的陆地处,B地位于海上一个灯塔处,在A地用测角器测得,在A地正西方向4km的点C处,用测角器测得.拟定铺设方案如下:在岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设.预算地下、水下的电缆铺设费用分别为2万元/km和4万元/km,设,,铺设电缆的总费用为万元.
(1)求函数的解析式;
(2)试问点P选在何处时,铺设的总费用最少,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对任意的,均有,则称函数具有性质.
(1)判断下面两个函数是否具有性质,并证明:①();②;
(2)若函数具有性质,且(,),
①求证:对任意,有;
②是否对任意,均有?若有,给出证明,若没有,给出反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com