精英家教网 > 高中数学 > 题目详情
设点P在曲线y=x2+2上,点Q在曲线上,则|PQ|的最小值等于   
【答案】分析:曲线的图象在第一象限,要使曲线y=x2+2上的点与曲线上的点取得最小值,点P应在曲线y=x2+2的第一象限内的图象上,分析可知y=x2+2(x≥0)与互为反函数,它们的图象关于直线y=x对称,所以,求出上点Q到直线y=x的最小值,乘以2即可得到|PQ|的最小值.
解答:解:由y=x2+2,得:x2=y-2,
所以,y=x2+2(x≥0)与互为反函数.
它们的图象关于y=x对称.
P在曲线y=x2+2上,点Q在曲线上,
设P(x,x2),Q(
要使|PQ|的距离最小,则P应在y=x2+2(x≥0)上,
又P,Q的距离为P或Q中一个点到y=x的最短距离的两倍.
以Q点为例,Q点到直线y=x的最短距离
d===
所以
则|PQ|的最小值等于
故答案为
点评:本题考查了反函数,考查了互为反函数图象之间的关系,考查了数学转化思想,解答此题的关键是把求两曲线上点的最小距离问题,转化为求一支曲线上的动点到定直线的最小距离问题,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2
(Ⅰ)当S1=S2时,求点P的坐标;
(Ⅱ)当S1+S2有最小值时,求点P的坐标和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)设点P在曲线y=x2+2上,点Q在曲线y=
x-2
上,则|PQ|的最小值等于
7
2
4
7
2
4

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市岳口高中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2
(Ⅰ)当S1=S2时,求点P的坐标;
(Ⅱ)当S1+S2有最小值时,求点P的坐标和最小值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省实验中学高二模块考试数学试卷(选修2-2)(解析版) 题型:解答题

设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2
(Ⅰ)当S1=S2时,求点P的坐标;
(Ⅱ)当S1+S2有最小值时,求点P的坐标和最小值.

查看答案和解析>>

同步练习册答案