精英家教网 > 高中数学 > 题目详情
18.(1)将下列文字语言转化为符号语言.
①点P在直线l上,但不在平面α内;
②平面α与平面β交于直线l,a在平面β内,且与直线l交于点P.
(2)将下列符号语言转化为图形语言.
①P∉m,m?α,l∩α=P;②α∩β=l,β∩γ=m,α∩γ=n,l∩m∩n=P.

分析 在集合中,点为元素,直线和平面为集合,根据题意,正确用集合中的符合即可.

解答 解:(1)将下列文字语言转化为符号语言.
①点P在直线l上,但不在平面α内:P∈l,P∉α;
②平面α与平面β交于直线l,a在平面β内,且与直线l交于点P:α∩β=l,a⊆β,a∩l=P;
(2)将下列符号语言转化为图形语言.
①P∉m,m?α,l∩α=P;
直线m在平面α内,直线l与平面α交于点P,且P不在直线m上;
②α∩β=l,β∩γ=m,α∩γ=n,l∩m∩n=P.
平面α与平面β交于直线l,平面β与平面γ交于直线m,平面α与平面γ交于直线n,且直线l,m,n相交于点P.

点评 考查了集合和空间几何中点,线,面的语言表述,属于基础内容,应牢记.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在极坐标系中,点(1,0)和点(1,$\frac{π}{2}$)的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,四棱锥P-ABCD的底面为等腰梯形,AB∥DC,AB=2AD=2,PA⊥平面ABCD,∠ABC=60°
(1)求AC的长;
(2)证明:BC⊥PC;
(3)若PA=AB,求PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}是等差数列,{bn}是正项等比数列,且a5=b6,则一定有(  )
A.a3+a7≤b4+b8B.a3+a7<b4+b8C.a3+a7>b4+b8D.a3+a7≥b4+b8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量且夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)等于(  )
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.两圆x2+y2-2y-3=0与x2+y2=1的位置关系是(  )
A.相交B.内含C.内切D.外切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-3x2+2.
(1)写出函数的单调区间;
(2)讨论函数的极大值或极小值,如有,试写出极值;
(3)画出它的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算:${(0.027)^{-\frac{1}{3}}}-{log_3}2•{log_8}3$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}+\overrightarrow{c}$=2$\overrightarrow{b}$,则称向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$依次成“等差”向量;若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}•\overrightarrow{c}$=$\overrightarrow{{b}^{2}}$,则称$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$依次成“等比”向量.已知直线l上不同三点A,B,C,O为直线l外一点,有以下说法:
①若$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$依次成“等差”向量,则点B是线段AC的中点;
②若点B是线段AC的中点,则$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$依次成“等差”向量;
③若点B是线段AC的中点,则$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$可能依次成“等比”向量;
④若|$\overrightarrow{OA}$|=5,|$\overrightarrow{OC}$|=8,|$\overrightarrow{AC}$|=7,则$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$不可能依次成“等比”向量.
其中说法正确的序号是①②④(把正确说法的序号都填上)

查看答案和解析>>

同步练习册答案