分析 (Ⅰ)利用正弦函数的单调增区间,求f(x)的单调增区间;
(Ⅱ)当$x∈[0,\frac{π}{2}]$时,$-\frac{π}{3}≤2x-\frac{π}{3}≤\frac{2π}{3}$,即可求f(x)的值域.
解答 解:(Ⅰ)∵$f(x)=sin(2x-\frac{π}{3})$,x∈R
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{3}≤\frac{π}{2}+2kπ$,k∈Z---------(3分)
得$-\frac{π}{12}+kπ≤x≤\frac{5π}{12}+kπ$,
所以f(x)的单调递增区间是$[-\frac{π}{12}+kπ,\frac{5π}{12}+kπ]$,k∈Z.---------(5分)
(Ⅱ)∵$x∈[0,\frac{π}{2}]$∴$-\frac{π}{3}≤2x-\frac{π}{3}≤\frac{2π}{3}$---------(7分)
∴由三角函数图象可得 $-\frac{{\sqrt{3}}}{2}≤sin(2x-\frac{π}{3})≤1$----------(9分)
∴当$x∈[0,\frac{π}{2}]$,y=g(x)的值域为$[-\frac{{\sqrt{3}}}{2},1]$.---------------(10分)
点评 本题考查正弦函数的图象与性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{\frac{3}{2},+∞})$ | B. | $({\frac{3}{2},2})∪({2,+∞})$ | C. | $[{\frac{3}{2},2})∪({2,+∞})$ | D. | (-∞,2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(\frac{1}{10},10)$ | B. | (0,10) | C. | (10,+∞) | D. | $(0,\frac{1}{10})∪(10,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-1 | C. | $\sqrt{5}$-2 | D. | $\sqrt{6}$-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-1≤x<1} | B. | {x|x>1} | C. | {x|-1<x<1} | D. | {x|x≥-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com