(本小题满分14分)设函数f(x)=x2+ex-xex.(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.
(1)f(x)的单调减区间为(-∞,+∞).(2)m<2-e2时,不等式f(x)>m恒成立.
解析试题分析:(I)直接求导,根据导数大(于)零,解不等式可得函数的单调增(减)区间.
(1)函数f(x)的定义域为(- ∞,+∞),
∵f′(x)=x+ex-(ex+xex)=x(1-ex),
若x<0,则1-ex>0,所以f′(x)<0;
若x>0,则1-ex<0,所以f′(x)<0;
∴f(x)在(-∞,+∞)上为减函数,
即f(x)的单调减区间为(-∞,+∞).
(2)由(1)知,f(x)在[-2,2]上单调递减.
∴[f(x)]min=f(2)=2-e2,
∴m<2-e2时,不等式f(x)>m恒成立.
考点:函数恒成立问题;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.
点评:导数主要用在研究函数的单调性,极值,最值等方面.要注意极值的判断方法.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数在
上是增函数,在
上是减函数.
(1)求函数的解析式;
(2)若时,
恒成立,求实数
的取值范围;
(3)是否存在实数,使得方程
在区间
上恰有两个相异实数根,若存在,求出
的范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设是定义在
上的奇函数,函数
与
的图象关于
轴对称,且当
时,
.
(I)求函数的解析式;
(II)若对于区间上任意的
,都有
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com