精英家教网 > 高中数学 > 题目详情
17.已知全集为R,集合A={x|$\frac{x-3}{x+1}$≤0},集合B={x||2x+1|>3}.求A∩(∁RB).

分析 化简集合A、B,根据补集与交集的定义写出A∩(∁RB)即可.

解答 解:全集为R,集合A={x|$\frac{x-3}{x+1}$≤0}={x|-1<x≤3},
集合B={x||2x+1|>3}={x|2x+1>3或2x+1<-3}={x|x>1或x<-2},
所以∁RB={x|-2≤x≤1},
A∩(∁RB)={x|-1<x≤1}.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别为角A,B,C的对边,a2-c2=b2-$\frac{8bc}{5}$,a=6,sinB=$\frac{4}{5}$.
(Ⅰ)求角A的正弦值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线$l:x-\sqrt{3}y+1=0$的斜率为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A,B,C,D四个类型,其考核评估标准如表:
评估得分[60,70)[70,80)[80,90)[90,100]
评分类型DCBA
考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:
(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x>0,则函数f(x)=$\frac{2}{x}$+x的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow{b}$=(1,-2),$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$(k∈R).
(1)若$\overrightarrow{m}$与向量2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求实数k的值;
(2)若向量$\overrightarrow{c}$=(1,-1),且$\overrightarrow{m}$与向量k$\overrightarrow{b}$+$\overrightarrow{c}$平行,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为M,延长FM交双曲线右支于点P,若M为FP的中点,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的首项a1=1,a2为整数,且a3∈[6,8]
(1)求数列{an}的通项公式;
(2)设${b_n}={a_n}+2+\frac{1}{{{2^{{a_n}+2}}}}$,Sn=b1+b2+…+bn,问是否存在最小的正整数n,使得Sn>108恒成立?若存在,求出n的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案