精英家教网 > 高中数学 > 题目详情
已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),给出以下三个结论:
(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26,其中正确结论的序号为______.
∵f(m,n+1)=f(m,n)+2=f(m,n-1)+4=…=f(m,1)+2n
=2f(m-1,1)+2n=4f(m-2,1)=2n=…=2m-1f(1,1)+2n=2m-1+2n
∴f(1,n)=2n-1
则(1)f(1,5)=2×5-1=9正确;
又∵f(m+1,1)=2f(m,1)=4f(m-1,1)=2mf(1,1)=2m
∴f(n,1)=2n-1
∴f(5,1)=24=16正确;
由f(m,n+1)=2m-1+2n可得f(5,6)=24+2×5=26正确
故答案为:3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

定义在R上的奇函数f(x),当x≥0时,f(x)=
log
1
2
(x+1)
,x∈[0,1)
1-|x-3|,x∈[1,+∞)
,则方程f(x)=
1
2
的所有解之和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2)
,且当x>1时f(x)<0.
(1)求f(1)的值
(2)判断f(x)的单调性
(3)若f(3)=-1,解不等式f(|x|)<2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数y=f(x),对任意x,y∈R,都有f(x+y)=f(x)+f(y)+m,则函数g(x)=f(x)+m+3ln
e
,x∈[-1,1]的最大值与最小值之和是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1,x<0
x2+1,x≥0
,则不等式f(1-x2)=f(2x)的解集是(  )
A.{x|x≤-1}B.{-1+
2
}
C.{x|x≤-1或x=-1+
2
}
D.{x|x<-1或x=-1+
2
}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列五个命题中,
(1)若数列的前n项和为,则是等比数列;
(2)若,则函数的值域为R;
(3)函数与函数的图象关于直线x=2对称;
(4)已知向量的夹角为钝角,则实数的取值范围是
(5)母线长为2,底面半径为的圆锥,过顶点的一个截面面积的最大值为,其中正确命题的个数为
A.1 B.2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数对于一切实数均有成立,且,则当时,不等式恒成立时,实数的取值范围是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则         

查看答案和解析>>

同步练习册答案