精英家教网 > 高中数学 > 题目详情
已知a1,a2,…,a8是首项为1,公比为2的等比数列,对于1≤k<8的整数k,数列b1,b2,…,b8由bn=
an+k,1≤n≤8-k
an+k-8, 8-k<n≤8
确定.记C=
8


n=1
anbn

(I)求k=3时C的值(求出具体的数值);
(Ⅱ)求C最小时k的值.
(I)显然an=2n-1(1≤n≤8)
∴k=3,∴bn=
an+3,1≤n≤5
an-5,5<n≤8.

C=
8




















n=1
anbn=
5




















n=1
anan+3+
8




















n=6
anan-5=
5




















n=1
22n+1+
8




















n=6
22n-6

=(23+25+27+29+211)+(25+27+29
=3400.
(II)∵bn=
an+k,1≤n≤8-k
an+k-8,8-k<n≤8.

C=
8




















n=1
anbn=
8-k




















n=1
anan+k+
8




















n=0-k
anan+k-8=
8-k




















n=1
22n+k-2+
8




















n=9-k
22n+k-10

=
2k(48-k-1)
4-1
+
28-k(4k-1)
4-1
=
1
3
(216-k-2k+28+k-28-k)

=
1
3
(212-24)(24-k+2k-4)≥
2
3
(212-24)
24-k2k-4
=2720

∴当且仅当24-k=2k-4时,C的值最小,此时解得k=4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知a1,a2,…,a8为各项都大于零的等比数列,公式q≠1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a1
a2
均为单位向量,那么
a1
=(
3
2
1
2
)
a1
+
a2
=(
3
,1)
的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1,a2,a3,a4成等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A1,A2,…,An,…依次在x轴上,A1(1,0)
A2(5,0)
AnAn+1
=
1
2
An-1An
(n=2,3,…),点B1,B2,…,Bn,…依次在射线y=x(x≥0)上,且B1(3,3),|
OBn
|
=|
OBn-1
|+2
2
(n=2,3,…)

(1)用n表示An,Bn的坐标;
(2)若四边形AnAn+1Bn+1Bn面积为Sn,求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选修4-5:不等式选讲
已知a1,a2…an都是正数,且a1•a2…an=1,求证:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

同步练习册答案