精英家教网 > 高中数学 > 题目详情
(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量 1至4件 5 至8件 9至12件 13至16件 17件及以上
顾客数(人) x 30 25 y 10
结算时间(分钟/人) 1 1.5 2 2.5 3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)
分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望;
(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且Xi(i=1,2)的分布列都与X的分布列相同,故可得结论.
解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;
将频率视为概率可得P(X=1)=
15
100
=0.15;P(X=1.5)=
30
100
=0.3;P(X=2)=
25
100
=0.25;P(X=2.5)=
20
100
=0.2;P(X=3)=
10
100
=0.1
X的分布列
 X  1  1.5  2  2.5  3
 P  0.15  0.3  0.25  0.2  0.1
X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9
(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则
P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)
由于各顾客的结算相互独立,且Xi(i=1,2)的分布列都与X的分布列相同,所以
P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125
故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.
点评:本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
(Ⅰ)用d表示a1,a2,并写出an+1与an的关系式;
(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 1至4件 5至8件 9至12件 13至16件 17件以上
顾客数(人) x 30 25 y 10
结算时间(分钟/人 1 1.5 2 2.5 3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)

查看答案和解析>>

同步练习册答案