精英家教网 > 高中数学 > 题目详情
某足够大德长方体箱子放置一球O,已知球O与长方体一个顶点出发的三个平面都相切,且球面上一点M到三个平面的距离分别为3,2,1,求球的半径.
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:设(a,b,c) 为球心,半径为R球面方程(x-a)2+(x-b)2+(x-c)2=R2,由于球与三个平面相切,所以有:半径R=|a|=|b|=|c|另外,球面上某点M(3,2,1),当然在球面上,并且到三个平面的距离分别为3、2、1,所以:(3-R)2+(2-R)2+(1-R)2=R2,即可得出结论.
解答: 解:设(a,b,c) 为球心,半径为R球面方程(x-a)2+(x-b)2+(x-c)2=R2
由于球与三个平面相切,所以有:半径R=|a|=|b|=|c|
另外,球面上某点M(3,2,1),当然在球面上,并且到三个平面的距离分别为3、2、1,
所以:(3-R)2+(2-R)2+(1-R)2=R2
即 2R2-12R+14=0
R2-6R+9=(R-3)2=2
解得:R=3±
2
点评:本题考查平面与球相切,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域是R上的函数f(x)满足f(x+2)=2f(x),当x∈(0,2]时,f(x)=
x2-x,x∈(0,1]
-log2x,x∈(1,2]
,若x∈(-4,-2]时,f(x)≤
t
4
-
1
2t
有解,则实数t的取值范围是(  )
A、[-2,0)∪(0,1)
B、[-2,0)∪[1,+∞)
C、[-2,1]
D、(-∞,-2]∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

某三棱锥的三视图如图所示,其正视图和侧视图都是直角三角形,则该三棱锥的体积等于(  )
A、
1
3
B、
2
3
C、1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线的两个焦点分别为F1,F2,若双曲线上存在点P满足|PF1|:|F1F2|:|PF2|=6:5:3,则双曲线的离心率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上取定一点O,从O出发引一条射线Ox,再取定一个长度单位及计算角度的正方向(取逆时针方向为正),就称建立了一个极坐标系,这样,平面上任一点P的位置可用有序数对(ρ,θ)确定,其中ρ表示线段OP的长度,θ表示从Ox到OP的角度.在极坐标系下,给出下列命题:
(1)平面上的点A(2,-
π
6
)与B(2,2kπ+
11π
6
)(k∈Z)重合;
(2)方程θ=
π
3
和方程ρsinθ=2分别都表示一条直线;
(3)动点A在曲线ρ(cos2
θ
2
-
1
2
)=2上,则点A与点O的最短距离为2;
(4)已知两点A(4,
3
),B(
4
3
3
π
6
),动点C在曲线ρ=8上,则△ABC面积的最大值为
40
3
3

其中正确命题的序号为
 
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

观察式子1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
…则可归纳出关于正整数n(n∈N*,n≥2)的式子为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:
日    期1月11日1月12日1月13日1月14日1月15日
平均气温x(°C)91012118
销量y(杯)2325302621
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程cq=2q-1;
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
附:线性回归方程
y
=
b
x+
a
中,
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
.
y
为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|2x-1|>x+2的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x2-2x-1的零点个数为(  )
A、0个B、1个C、2个D、不确定

查看答案和解析>>

同步练习册答案