已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项.
(1)求数列{an}的通项公式;
(2)若{an}的公比q∈(0,1),设bn=an•log2an,求数列{bn}的前n项和Sn.
分析:(1)根据a
n是各项为正数的等比数列,且a
1a
3+2a
2a
4+a
3a
5=100求出a
2+a
4=10,然后联合a
2•a
4=16,求出数列{a
n}的通项公式,
(2)当{a
n}的公比q∈(0,1),即q=
,然后根据b
n=a
n•log
2a
n,把a
n代入可得a
n=(5-n)•2
5-n,求出S
n=4•2
4+3•2
3+2•2
2++(5-n)•2
5-n,再用
•S
n得
S
n=4•2
3+3•2
2+2•2
1+…+(5-n)•2
4-n,两式相减后即可得数列{b
n}的前n项和S
n.
解答:解:(1)a
n是各项为正数的等比数列,且a
1a
3+2a
2a
4+a
3a
5=100∴a
22+2a
2a
4+a
42=100,(a
2+a
4)
2=100即:a
2+a
4=10,
由
?或
,
1当
时,
q2==4?q=2(q=-26舍去),a
n=a
2q
n-2=2
n-1,
②当
时,
q2==?q=(q=-舍去),a
n=a
2q
n-2=2
5-n,
(2)若0<q<1,则:a
n=a
2q
n-2=2
5-nlog
2a
n=5-nb
n=a
nlog
2a
n=(5-n)•2
5-n∴S
n=4•2
4+3•2
3+2•2
2+…+(5-n)•2
5-n,
S
n=4•2
3+3•2
2+2•2
1+…+(5-n)•2
4-n,
两式相减得:
S
n=4•2
4-(2
3+2
2+2
1++2
5-n)-(5-n)•2
4-n=
64--(5-n)•24-n,
S
n=96+(n-3)•2
5-n.
点评:本题主要考查数列求和和等比数列的通项公式的知识点,解答本题的关键是要分类讨论求出等比数列的公比q,还要熟练掌握用错位相减法进行求和.