精英家教网 > 高中数学 > 题目详情

【题目】某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.

(Ⅰ)设为事件“选出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)设为选出的4人中男生人数与女生人数差的绝对值,求随机变量的分布列和数学期望.

【答案】(1)(2)

【解析】

试题(Ⅰ)根据古典概型结合排列组合知识求出所选四人全部是理科的概率,再根据对立事件的概率公式求解;(Ⅱ)随机变量的所有可能值为 ,利用古典概型概率公式,分别求出对应概率,进而得分布列,根据期望公式可得结果.

试题解析:(Ⅰ),故事件发生的概率为.

(Ⅱ)随机变量的所有可能值为0,2,4.

所以随机变量的分布列为

0

2

4

随机变量的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10.设小圆弧所在圆的半径为米,圆心角为(弧度).

1)求关于的函数关系式;

2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为9/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时, 取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周脾算经》有记载:一年有二十四个节气,每个节气晷(gui)长损益相同,晷是按照日影测定时刻的仪器,晷长即所测定的影子的长度,二十四节气及晷长变化如图所示,相邻两个节气晷长变化量相同,周而复始,若冬至晷长最长是一丈三尺五寸,夏至晷长最短是一尺五寸,(一丈等于10尺,一尺等于10寸),则秋分节气的晷长是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面分别是的中点.

1)求证:平面

2)求证:

3)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,直线l过点

若直线l被圆所截得的弦长为,求直线l的方程;

若圆P是以为直径的圆,求圆P与圆的公共弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

的单调区间和极值;

时,若,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线上.

(1)求圆的方程;

(2)圆与圆相交于M、N两点,求两圆的公共弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数,函数的导函数为.

①求函数的定义域;

②求函数的零点个数.

(2)给出如下定义:如果是曲线和曲线的公共点,并且曲线在点处的切线与曲线在点处的切线重合,则称曲线与曲线在点处相切,点叫曲线和曲线的一个切点.试判断曲线与曲线是否在某点处相切?若是,求出所有切点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案