精英家教网 > 高中数学 > 题目详情
16.O为坐标原点,F为抛物线C:y2=4x的焦点,直线l:y=m(x-1)与抛物线C交于A,B两点,点A在第一象限,若|AF|=3|BF|,则m的值为$\sqrt{3}$.

分析 求出抛物线的焦点,设直线l为x=ky+1,代入抛物线方程,运用韦达定理和|AF|=3|BF|,解得k,即可得到m的值.

解答 解:抛物线y2=4x的焦点为(1,0),
设直线l为x=ky+1(k>0),代入抛物线方程可得y2-4ky-4=0,
设A(x1,y1),B(x2,y2),
则y1+y2=4k,y1y2=-4,
由|AF|=3|BF|,可得y1=-3y2
由代入法,可得k2=$\frac{1}{3}$,
∴k=$\frac{\sqrt{3}}{3}$,
∴m=$\sqrt{3}$.
故答案为:$\sqrt{3}$

点评 本题考查直线和抛物线的位置关系的综合应用,主要考查韦达定理,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知三角形ABC的三个顶点均在椭圆4x2+5y2=80上,且点A是椭圆短轴的一个端点(点M在y轴正半轴上).
(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;
(2)若角A为90°,AD垂直BC于D,试求点D的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.log224+eln2-log49=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于直线a,b有下列四个命题:
①过直线a有且只有一个平面β.使b∥β;
②过直线a有且只有一平面β.使b⊥β;
③在空间存在平面β,使得a∥β,b∥β;
④在空间不存在平面β,使a⊥β,b⊥β.
其中,正确的命题的序号是③(把所有正确序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正四面体的四个顶点都在以原点O(0,0,0)为球心,半径为1的球面上,已知该正四面体的一个顶点P的坐标为(0,0,1),另一个顶点Q的坐标为(m,n,p),则下列选项正确的是(  )
A.$\overrightarrow{OP}$与$\overrightarrow{OQ}$的夹角为120°B.m2+n2=p2
C.mn<0D.p<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线a,b,平面α,β,若a?α,b?β,则“a与b相交”是“α与β相交”的充分不必要条件条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.记区间[a,b]的长度为b-a,已知A=[a,a+$\frac{2}{3}$],B=[b-$\frac{3}{4}$,b],A,B⊆[0,1],则A∩B长度的最小值为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}共有9项,其中,a1=a9=1,且对每个i∈{1,2,…,8},均有$\frac{{a}_{i+1}}{{a}_{i}}$∈{2,1,-$\frac{1}{2}$},则数列{an}的个数为(  )
A.729B.491C.490D.243

查看答案和解析>>

同步练习册答案