精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于两个不同的点.

(1)求点到其准线的距离;

(2)求证:直线的斜率为定值.

【答案】(1)5;(2)

【解析】

1)把点M的坐标代入抛物线的方程,求出点M的坐标,然后根据抛物线的定义求出点到其准线的距离;

2)设出直线MA的方程,与抛物线方程联立,得出A 的纵坐标,同理得出B的纵坐标,由已知条件结合点差法推导出AB的斜率表达式,把AB的坐标代入,由此能证明直线AB的斜率为定值.

1)∵Ma4)是抛物线y24x上一定点,∴424aa4

∵抛物线y24x的准线方程为x=﹣1,故点M到其准线的距离为5

2)由题知直线MAMB的斜率存在且不为0,设直线MA的方程为:y4kx4);

联立,设

,即

∵直线的斜率互为相反数,直线MB的方程为:

同理可得:AB两点都在抛物线y24x上,∴

直线AB的斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且

求定义域;

若函数的反函数是其本身,求a的值;

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.

(1)求课外兴趣小组中男、女同学的人数;

(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;

(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74 ,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为

(Ⅰ)求直线与底面所成的角;

(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆的方程为,点为圆上的动点,过点的直线被圆截得的弦长为

(1)求直线的方程;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处的切线方程为

(1),证明:

(2)若方程有两个实数根,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三个数给予适当的编排,分别取常用对数后成公差为1的等差数列,那么,此时______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.

上架时间

2

4

6

8

10

12

销售量

64

138

205

285

360

430

(1)求表中销售量的平均数和中位数;

(2)① 作出散点图,并判断变量是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程

②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.

附:线性回归方程中, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形若该阳马的顶点都在同一个球面上,且该球的表面积为,则该“阳马”的体积为__

查看答案和解析>>

同步练习册答案