【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与x轴的交点为F,直线l与曲线C的交点为A、B,求|FA|+|FB|的值.
【答案】(1)直线l的普通方程为,曲线C的直角坐标方程为y2=4x
(2)16
【解析】
(1)消参即可求出直线l的普通方程,由代入即可求出曲线C的直角坐标方程.
(2)将直线的参数方程代入曲线方程,根据韦达定理求出,t1t2=﹣16(t1和t2为A、B对应的参数),由即可求解.
(1)直线l的参数方程为(t为参数),转换为直角坐标方程为.
曲线C的极坐标方程为ρsin2θ=4cosθ.整理得(ρsinθ)2=4ρcosθ,转换为直角坐标方程为y2=4x.
(2)由于直线l与x轴的交点坐标为(1,0),所以把直线l的参数方程(t为参数)代入y2=4x,
得到,即,
所以,t1t2=﹣16(t1和t2为A、B对应的参数),
所以|FA|+|FB|.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)
注:l丈=10尺=100寸,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构为了解人们对某个产品的使用情况是否与性别有关,在网上进行了问卷调查,在调查结果中随机抽取了份进行统计,得到如下列联表:
男性 | 女性 | 合计 | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)请根据调查结果你有多大把握认为使用该产品与性别有关;
(2)在不使用该产品的人中,按性别用分层抽样抽取人,再从这人中随机抽取人参加某项活动,记被抽中参加该项活动的女性人数为,求的分布列和数学期望.
附:,
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C经过伸缩变换得到曲线E,直线l:(t为参数)与曲线E交于A,B两点,
(1)设曲线C上任一点为,求的最小值;
(2)求出曲线E的直角坐标方程,并求出直线l被曲线E截得的弦AB长;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】试比较下面概率的大小:
(1)如果以连续掷两次骰子依次得到的点数m,n作为点P的横、纵坐标,点P在直线的下面包括直线的概率;
(2)在正方形,,x,,随机地投掷点P,求点P落在正方形T内直线的下面包括直线的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,是椭圆上一点,轴,.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于、两点,线段的中点为,为坐标原点,且,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com