【题目】已知椭圆的左右两个焦点为,离心率为,过点.
(1)求椭圆C的标准方程;
(2)设直线与椭圆C相交于两点,椭圆的左顶点为,连接并延长交直线于两点 ,分别为的纵坐标,且满足.求证:直线过定点.
科目:高中数学 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)的离心率为 ,直线x+y+ =0与椭圆E仅有一个公共点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3所截得的弦长为3,且与椭圆E交于A、B两点,求△ABO面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右顶点分别为,左焦点为,已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点的直线与该椭圆交于两点,且线段的中点恰为点,且直线的方程;
(3)若经过点的直线与椭圆交于两点,记与的面积分别为和,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b 是函数 的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示,则下列判断错误的是( )
A.ω=2
B.
C.函数f(x)的图象关于(﹣ , 0)对称
D.函数f(x)的图象向右平移个单位后得到y=Asinωx的图象
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P是直线l:3x-4y+11=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线(A,B是切点),C是圆心,那么四边形PACB的面积的最小值是( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则a的取值范围是( )
A.(﹣∞,4]
B.(﹣∞,2]
C.(﹣4,4]
D.(﹣4,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,若存在x0 , 使得 ,则x0称是函数 的一个不动点,设
(1)求函数 的不动点;
(2)对(1)中的二个不动点a、b(假设a>b),求使 恒成立的常数k的值;
(3)对由a1=1,an= 定义的数列{an},求其通项公式an .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com