精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知椭圆 为焦点,且离心率. 
(Ⅰ)求椭圆的方程;
(Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。
(Ⅲ)设椭圆轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量垂直?如果存在,写出的方程;如果不存在,请说明理由。
(1);(2);(3)不存在满足题设条件的.
(1)由可求出a,进而求出b.得到椭圆方程.
(II)设直线与椭圆方程联立消,
因为直线与椭圆有两个交点,所以方程有两个不同的实数根,因而判别式大于零,从而求出k的取值范围。
(III),然后再用k表示出来,求出,根据,建立关于k的方程,解出k值,再验证是否符合(II)中k要求的范围。
解:(I)设椭圆的半长轴长、半短轴长、半焦距长分别为
由题设知:1分,
,得2分
3分
∴椭圆的方程为4分
(Ⅱ)过点斜率为的直线
5分
与椭圆方程联立消6分
与椭圆有两个不同交点知
7分
的范围是8分
(Ⅲ)设,则的二根
,则
10分
由题设知,∴11分
,须12分
13分
∴不存在满足题设条件的14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的中心在坐标原点,焦点在轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点且相互垂直的两条直线,交椭圆E于两点,交椭圆E于两点,的中点分别为
(1)求椭圆E的标准方程;
(2)求直线的斜率的取值范围;
(3)求证直线与直线的斜率乘积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的中心在原点,焦距为4 一条准线为x="-4" ,则该椭圆的方程为
A.+=1B.+=1C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分15分)已知椭圆ab>0)的离心率,过点A(0,-b)和Ba,0)的直线与原点的距离为 
(1)求椭圆的方程 
(2)已知定点E(-1,0),若直线ykx+2(k≠0)与椭圆交于C D两点 问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点是
(1)求此椭圆的标准方程
(2)设点P在此椭圆上,且有的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在椭圆上,求点到直线的最大距离和最小距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的长轴长是(  )
A.  B.   C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为,若椭圆上存在点(异于长轴的端点),使得,则该椭圆离心率的取值范围是    

查看答案和解析>>

同步练习册答案