精英家教网 > 高中数学 > 题目详情
9、若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分析,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分析,则集合A={a1,a2,a3}的不同分析种数是
27
分析:考虑集合A1为空集,有一个元素,2个元素,和集合A相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,利用二次项定理即可求出值.
解答:解:当A1=∅时必须A2=A,分析种数为1;
当A1有一个元素时,分析种数为C31•2;
当A1有2个元素时,分析总数为C33•22
当A1=A时,分析种数为C33•23
所以总的不同分析种数为1+C31•21+C32•22+C33•23=(1+2)3=27.
故答案为:27
点评:此题考查了交、并、补集的混合运算,考查了分类讨论的数学思想,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}?的不同分拆种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

8、若集合A1,A2满足A1∪A2=A,则记[A1,A2]是A的一组双子集拆分.规定:[A1,A2]和[A2,A1]是A的同一组双子集拆分,已知集合A={1,2,3},那么A的不同双子集拆分共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={1,2,3}的不同分拆种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,
(1)集合A={a,b}的不同分拆种数为多少?
(2)集合A={a,b,c}的不同分拆种数为多少?
(3)由上述两题归纳一般的情形:集合A={a1,a2,a3,…an}的不同分拆种数为多少?(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则记[A1,A2]是A的一组双子集拆分.规定:[A1,A2]和[A2,A1]是A的同一组双子集拆分,已知集合A={1,2},那么A的不同双子集拆分共有(  )

查看答案和解析>>

同步练习册答案