精英家教网 > 高中数学 > 题目详情
(2011•许昌三模)M、N分别是△ABC的边AB,AC上,且
AM
BN
=
1
3
AN
AC
=
1
4
,BN与CM交于点P,设
AB
=
a
AC
=
b
,若
AP
=x
a
-y
b
(x,y∈R),则x+y=
1
11
1
11
分析:由题意,设
BP
BN
CP
CM
,求出λ=
8
11
,μ=
9
11
,即可得出结论.
解答:解:由题意,设
BP
BN
CP
CM

BP
BN
=
λ
4
b
a
CP
CM
=
μ
3
a
b

AP
=
AB
+
BP
=
λ
4
b
+(1-λ)
a
AP
=
AC
+
CP
=
μ
3
a
+(1-
μ)b

1-λ=
μ
3
λ
4
=1-μ

λ=
8
11
,μ=
9
11

AP
=
2
11
b
+
3
11
a

x=
3
11
,y=-
2
11

∴x+y=
1
11

故答案为:
1
11
点评:本题考查向量知识的运用,考查平面向量基本定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•许昌三模)已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)
与 
b
=(1,y)
共线,设函数y=f(x).
(1)求函数f(x)的周期及最大值;
(2)已知锐角△ABC中的三个内角分别为A、B、C,若有f(A-
π
3
)=
3
,边BC=
7
sinB=
21
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)已知命题:p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”,若命题“¬p且q”是真命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)已知a、b、c都是正整数且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)设l,m是两条不同直线,α是一个平面,则下列四个命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分.比赛进行到有一人比对方多2分或打满6局时停止,设甲在每局中获胜的概率为p(p>
1
2
)
,且各局胜负相互独立,已知第二局比赛结束时比赛停止的概率为
5
9
,若右图为统计这次比赛的局数和甲乙的总得分数S,T的程序框图,其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.
(I)求p的值;
(Ⅱ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列数学望Eξ.

查看答案和解析>>

同步练习册答案