精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.
(1)若 ,求| |;
(2)设 =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.

【答案】
(1)解:∵A(1,1),B(2,3),C(3,2),

∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0

∴3x﹣6=0,3y﹣6=0

∴x=2,y=2,

=(2,2)


(2)解:∵A(1,1),B(2,3),C(3,2),

=m +n

∴(x,y)=(m+2n,2m+n)

∴x=m+2n,y=2m+n

∴m﹣n=y﹣x,

令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,

故m﹣n的最大值为1.


【解析】(1)先根据 ,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(2)利用向量的坐标运算,先求出 ,再根据 =m +n ,表示出m﹣n=y﹣x,最后结合图形,求出m﹣n的最小值.
【考点精析】掌握平面向量的基本定理及其意义和平面向量的坐标运算是解答本题的根本,需要知道如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使;坐标运算:设;;设,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是(  )
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量(其中),记,且满足.

(1)求函数的解析式;

(2)若关于的方程上有三个不相等的实数根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆 ,且).

(1)设为坐标轴上的点,满足:过点P分别作圆与圆的一条切线,切点分别为,使得,试求出所有满足条件的点的坐标;

(2)若斜率为正数的直线平分圆,求证:直线与圆总相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知平面平面

(1)若,求证:

(2)若过点作直线平面,求证:平面

查看答案和解析>>

同步练习册答案