【题目】已知函数(其中是常数,且),曲线在处的切线方程为.
(1)求的值;
(2)若存在(其中是自然对数的底),使得成立,求的取值范围;
(3)设,若对任意,均存在,使得方程有三个不同的实数解,求实数的取值范围.
【答案】(1).(2).(3)
【解析】
(1)求出在处的导数,利用斜率和函数值建立等式关系,则可求出的值. (2)由条件可知,原题等价于在上有解,设,即,求导求函数的最值,从而求出的取值范围. (3)通过求导分析的单调性和最值,分类讨论求出的取值范围.
(1),由题知,且,
解得;
(2)由(1)知,因为存在,使得,
即,设,则需,
,设,则在上恒成立,
即单调递增,又因为,所以在上恒成立,
即单调递增,所以,
令,解得;
(3),,
①当时,对任意,易知方程均仅有唯一解,
且当时,,单调递增,
当时,,单调递减,
故方程最多有两个不同的实数解,所以不符合题意;
② 当时,若,则恒成立,单调递增,
方程最多只有一个实数解,不符题意,
所以对任意,应有,即,
此时,易知方程在上有两个不同的实数根,
因为,不妨取,则有,列表如下:
极大值 | 极小值 |
由表可知,的极大值为,
因为,所以,
又因为,且,所以,
因为,所以必然存在,
使得方程在区间上均有一个实数解,符合题意;
综上所述,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为厘米,瓶底直径为厘米,瓶口距瓶颈为厘米,瓶颈到水位线距离和水位线到瓶底距离均为厘米,现将颗石子投入瓶中,发现水位线上移厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )
A.颗B.颗C.颗D.颗
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:
(1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?
(2)将同学乙的成绩的频率分布直方图补充完整;
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在椭圆上任取一点(不为长轴端点),连结、,并延长与椭圆分别交于点、两点,已知的周长为8,面积的最大值为.
(1)求椭圆的方程;
(2)设坐标原点为,当不是椭圆的顶点时,直线和直线的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右顶点为,离心率为,点在椭圆上,点与点关于原点对称.
(1)求椭圆的标准方程;
(2)求经过点,且和轴相切的圆的方程;
(3)若,是椭圆上异于,的两个点,且,点在直线的上方,试判断的平分线是否经过轴上的一个定点?若是,求出该定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春,新型冠状病毒在我国湖北武汉爆发并讯速蔓延,病毒传染性强并严重危害人民生命安全,国家卫健委果断要求全体人民自我居家隔离,为支援湖北武汉新型冠状病毒疫情防控工作,各地医护人员纷纷逆行,才使得病毒蔓延得到了有效控制.某社区为保障居民的生活不受影响,由社区志愿者为其配送蔬菜、大米等生活用品,记者随机抽查了男、女居民各100名对志愿者所买生活用品满意度的评价,得到下面的2×2列联表.
特别满意 | 基本满意 | |
男 | 80 | 20 |
女 | 95 | 5 |
(1)被调查的男性居民中有5个年轻人,其中有2名对志愿者所买生活用品特别满意,现在这5名年轻人中随机抽取3人,求至多有1人特别满意的概率.
(2)能否有99%的把握认为男、女居民对志愿者所买生活用品的评价有差异?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论:
(1)焦距长约为300公里;
(2)长轴长约为3988公里;
(3)两焦点坐标约为;
(4)离心率约为.
其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,,则下面结论正确的是( )
A.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com