精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.

【答案】
(1)

证明:连接AB′、AC′,

由已知∠BAC=90°,AB=AC,

三棱柱ABC﹣A′B′C′为直三棱柱,

所以M为AB′中点,

又因为N为B′C′的中点,

所以MN∥AC′,

又MN平面A′ACC′,

因此MN∥平面A′ACC′;

法二:取A′B′的中点P,连接MP、NP,

M、N分别为A′B、B′C′的中点,

所以MP∥AA′,NP∥A′C′,

所以MP∥平面A′ACC′,PN∥平面A′ACC′,

又MP∩NP=P,因此平面MPN∥平面A′ACC′,

而MN平面MPN,

因此MN∥平面A′ACC′.


(2)

解:以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,如图,

设AA′=1,则AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1).

所以M( ),N( ),

=(x1,y1,z1)是平面A′MN的法向量,

,得

可取

=(x2,y2,z2)是平面MNC的法向量,

,得

可取

因为二面角A'﹣MN﹣C为直二面角,

所以

即﹣3+(﹣1)×(﹣1)+λ2=0,

解得λ=


【解析】(1)法一,连接AB′、AC′,说明三棱柱ABC﹣A′B′C′为直三棱柱,推出MN∥AC′,然后证明MN∥平面A′ACC′;
法二,取A′B′的中点P,连接MP、NP,推出MP∥平面A′ACC′,PN∥平面A′ACC′,然后通过平面与平面平行证MN∥平面A′ACC′.(2)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,设AA′=1,推出A,B,C,A′,B′,C′坐标求出M,N,设 =(x1 , y1 , z1)是平面A′MN的法向量,通过 ,取 ,设 =(x2 , y2 , z2)是平面MNC的法向量,由 ,取 ,利用二面角A'﹣MN﹣C为直二面角,所以 ,解λ.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩:

甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;

乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;

(1)用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;

(2)分别计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地铁换乘站设有编号为的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:

安全出口编号

疏散乘客时间(

186

125

160

175

145

则疏散乘客最快的一个安全出口的编号是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC,点P,A,B,C都在半径为 的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程
在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1 , C2的极坐标方程,并求出圆C1 , C2的交点坐标(用极坐标表示);
(2)求圆C1与C2的公共弦的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数在区间上有最大值4,最小值0.

1)求函数的解析式;

2)设,若时恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧棱与底面垂直, ,点分别为的中点.

(1)证明: 平面

证明: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合Pn={1,2,…,n},n∈N* . 记f(n)为同时满足下列条件的集合A的个数:
①APn;②若x∈A,则2xA;③若x∈ A,则2x A.
(1)求f(4);
(2)求f(n)的解析式(用n表示).

查看答案和解析>>

同步练习册答案