精英家教网 > 高中数学 > 题目详情

已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2).

(1)求f(-1),f(2.5)的值(用k表示);

(2)写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明);

(3)求出f(x)在[-3,2]上最小值与最大值,并求出相应的自变量的取值.

答案:
解析:

  (1)f(-1)=kf(1)=k(-1)=-k  2分

  f(2.5)=f(0.5)=××(-)=-  4分

  x∈[-2,0]时,x+2∈[0,2]

  ∴f(x)=kf(x+2)=k(x+2)x  6分

  x∈[-3,-2)时 x+2∈[-1,0)

  ∴f(x)=kf(x+2)=k2(x+4)(x+2)  8分

  ∴f(x)=

  (2)f(x)在[-3,-1]上单调增,在[1,2]单调增在[-1,1]上单调减  12分

  (3)x=-1,f(x)max=-k  13分

  k=-1,f(x)min=-1,此时x=1或x=-3  14分

  k<-1时,f(x)min=-k2,此时x=-3  15分

  -1<k<0时,f(x)min=-1,此时x=1  16分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:北京市海淀区2012届高三下学期期中练习数学文科试题 题型:022

已知函数f(x)=则f(f(x))=________;

下面三个命题中,所有真命题的序号是________.

①函数f(x)是偶函数;

②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;

③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))使得△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试、理科数学(上海卷) 题型:044

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.

(1)若x2-1比1远离0,求x的取值范围;

(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab

(3)已知函数f(x)的定义域.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:2010年全国普通高等学校招生统一考试、文科数学(上海卷) 题型:044

若实数xym满足|xm|<|ym|,则称xy接近m

(1)若x21比3接近0,求x的取值范围;

(2)对任意两个不相等的正数ab,证明:a2b+ab2a3b3接近2ab

(3)已知函数f(x)的定义域D={x|xk∈Z,x∈R}.任取x∈Df(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:上海高考真题 题型:解答题

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m,
(Ⅰ)若x2-1比1远离0,求x的取值范围;
(Ⅱ)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
(Ⅲ)已知函数f(x)的定义域D={x|x≠,k∈Z,x∈R},任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

同步练习册答案