【题目】下面四个说法(其中A、B表示点,a表示直线,α表示平面):
①∵Aα,Bα,∴ABα;
②∵A∈α,Bα,∴ABα;
③∵Aa,aα,∴Aα;
④∵A∈a,aα,∴A∈α.
其中表述方式和推理都正确的命题的序号是 ( )
A. ①④ B. ②③ C. ④ D. ③
科目:高中数学 来源: 题型:
【题目】已知数列满足,是数列的前项的和.
(1)若数列为等差数列.
①求数列的通项;
②若数列满足,数列满足,试比较数列前项和与前项和的大小;
(2)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某测观点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,上顶点与两焦点构成的三角形为正三角形.
(1)求椭圆的离心率;
(2)过点的直线与椭圆交于两点,若的内切圆的面积的最大值为,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的是二等品或三等品”的概率为( )
A. 0.7 B. 0.65
C. 0.35 D. 0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,下列命题错误的是 ( )
A. 一条直线与两个平行平面中的一个相交,则必与另一个相交
B. 一个平面与两个平行平面相交,交线平行
C. 平行于同一平面的两个平面平行
D. 平行于同一直线的两个平面平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.
(Ⅰ)证明:平面AEF⊥平面B1BCC1;
(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()是偶函数.
(1)求k的值;
(2)若函数的图象与直线没有交点,求的取值范围;
(3)若函数,,是否存在实数使得最小值为,若存在,求出的值; 若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com